Plant DiversityPub Date : 2023-12-01DOI: 10.1016/j.pld.2023.12.001
Bailong Zhao
{"title":"pyIFPNI: A package for querying and downloading plant fossil data from the IFPNI","authors":"Bailong Zhao","doi":"10.1016/j.pld.2023.12.001","DOIUrl":"https://doi.org/10.1016/j.pld.2023.12.001","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-12-01DOI: 10.1016/j.pld.2023.12.002
Xing-jin He
{"title":"Integrating high-volume molecular and morphological data into the evolutionary studies of Allium","authors":"Xing-jin He","doi":"10.1016/j.pld.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.pld.2023.12.002","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-12-01DOI: 10.1016/j.pld.2023.11.004
Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian
{"title":"Global patterns and ecological drivers of taxonomic and phylogenetic endemism in angiosperm genera","authors":"Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian","doi":"10.1016/j.pld.2023.11.004","DOIUrl":"https://doi.org/10.1016/j.pld.2023.11.004","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138611307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-11-18eCollection Date: 2024-01-01DOI: 10.1016/j.pld.2023.11.001
Changwei Bi, Ning Sun, Fuchuan Han, Kewang Xu, Yong Yang, David K Ferguson
{"title":"The first mitogenome of Lauraceae (<i>Cinnamomum chekiangense</i>).","authors":"Changwei Bi, Ning Sun, Fuchuan Han, Kewang Xu, Yong Yang, David K Ferguson","doi":"10.1016/j.pld.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.pld.2023.11.001","url":null,"abstract":"<p><p>•The first reported mitochondrial genome (<i>Cinnamomum chekiangense</i>) of the Lauraceae family.•The mitogenome of <i>C. chekiangense</i> retains almost all of the ancestral protein-coding genes and has the highest RNA editing number in angiosperms.•Both of the plastid and mitochondrial phylogenetic trees support the magnoliids as a sister group of monocots and eudicots.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-11-01DOI: 10.1016/j.pld.2023.10.002
Thant Sin Aung , Alice C. Hughes , Phyo Kay Khine , Bo Liu , Xiao-Li Shen , Ke-Ping Ma
{"title":"Corrigendum to Patterns of floristic inventory and plant collections in Myanmar [Plant Divers. 45 (3) (2023) 302–308]","authors":"Thant Sin Aung , Alice C. Hughes , Phyo Kay Khine , Bo Liu , Xiao-Li Shen , Ke-Ping Ma","doi":"10.1016/j.pld.2023.10.002","DOIUrl":"10.1016/j.pld.2023.10.002","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468265923001300/pdfft?md5=932e3e91575bf9de6ffa150597c70f9a&pid=1-s2.0-S2468265923001300-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The worldwide allometric relationship in anatomical structures for plant roots","authors":"Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong","doi":"10.1016/j.pld.2023.05.002","DOIUrl":"10.1016/j.pld.2023.05.002","url":null,"abstract":"<div><p>The cortex (i.e., absorptive tissue) and stele (transportive vascular tissue) are fundamental to the function of plant roots. Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology, physiology, and plant responses to global environmental changes. In this review, we first compile a large data set on anatomical traits in absorptive roots, including cortex thickness and stele radius, across 698 observations and 512 species. Using this data set, we reveal a common root allometry in absorptive root structures, i.e., cortex thickness increases much faster than stele radius with increasing root diameter (hereafter, root allometry). Root allometry is further validated within and across plant growth forms (woody, grass, and liana species), mycorrhiza types (arbuscular mycorrhiza, ectomycorrhiza, and orchid mycorrhizas), phylogenetic gradients (from ferns to Orchidaceae), and environmental change scenarios (e.g., elevation of atmospheric CO<sub>2</sub> concentration and nitrogen fertilization). These findings indicate that root allometry is common in plants. Importantly, root allometry varies greatly across species. We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms. We further discuss ecological and evolutionary implications of root allometry. Finally, we propose several important research directions that should be pursued regarding root allometry.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468265923000793/pdfft?md5=be6de406993fea796dc3af7ddd7c0452&pid=1-s2.0-S2468265923000793-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136370963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-11-01DOI: 10.1016/j.pld.2023.01.007
Anna A. Betekhtina , Daria E. Tukova , Denis V. Veselkin
{"title":"Root structure syndromes of four families of monocots in the Middle Urals","authors":"Anna A. Betekhtina , Daria E. Tukova , Denis V. Veselkin","doi":"10.1016/j.pld.2023.01.007","DOIUrl":"10.1016/j.pld.2023.01.007","url":null,"abstract":"<div><p>The present article tests the following general assumption: plant taxa with different specializations towards mycorrhizal interactions should have different root syndromes. Roots of 61 species common in boreal zone were studied: 16 species of Poaceae, 24 species of Cyperaceae, 14 species of Orchidaceae, and 7 species of Iridaceae. Using a fixed material of 5 individuals of each species, the following was determined: number of orders of branching roots; transverse dimensions of root, stele and cortex; number of primary xylem vessels and exodermis layers; length of root hairs; abundance of mycorrhiza. Species of each family had well-defined syndromes. Roots of Orchidaceae and Iridaceae were thick with a large stele and developed exodermis. Orchidaceae had no branching roots and had long root hairs. In Iridaceae, roots were branched, and root hairs were short. Roots of Poaceae and Cyperaceae were thin with a relatively thin stele. Root hairs were short in Poaceae and long in Cyperaceae. Our finding that root syndromes of four families of monocots differed is a new and unexpected discovery. The high specificity of root syndromes in Cyperaceae, Iridaceae, Poaceae, and Orchidaceae indicates that species of these families use different strategies to obtain water and soil nutrients.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468265923000264/pdfft?md5=643ad51fe0cefb321c6d43d235adbd14&pid=1-s2.0-S2468265923000264-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86980509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}