Plant Diversity最新文献

筛选
英文 中文
Floral trait variation across individual plants within a population enhances defense capability to nectar robbing 群体内植株间的花性状变异增强了对花蜜掠夺的防御能力
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2022.11.002
Shuang Tie , Yong-Deng He , Amparo Lázaro , David W. Inouye , You-Hao Guo , Chun-Feng Yang
{"title":"Floral trait variation across individual plants within a population enhances defense capability to nectar robbing","authors":"Shuang Tie ,&nbsp;Yong-Deng He ,&nbsp;Amparo Lázaro ,&nbsp;David W. Inouye ,&nbsp;You-Hao Guo ,&nbsp;Chun-Feng Yang","doi":"10.1016/j.pld.2022.11.002","DOIUrl":"10.1016/j.pld.2022.11.002","url":null,"abstract":"<div><p>Floral trait variation may help pollinators and nectar robbers identify their target plants and, thus, lead to differential selection pressure for defense capability against floral antagonists. However, the effect of floral trait variation among individuals within a population on multi-dimensional plant-animal interactions has been little explored. We investigated floral trait variation, pollination, and nectar robbing among individual plants in a population of the bumble bee-pollinated plant, <em>Caryopteris divaricata</em>, from which flowers are also robbed by bumble bees with varying intensity across individuals. We measured the variation in corolla tube length, nectar volume and sugar concentration among individual plants, and evaluated whether the variation were recognized by pollinators and robbers. We investigated the influence of nectar robbing on legitimate visitation and seed production per fruit. We found that the primary nectar robber (<em>Bombus nobilis</em>) preferred to forage on plants with long-tubed flowers, which produced less nectar and had lower sugar concentration compared to those with shorter corolla tubes. Individuals with shorter corolla tubes had comparatively lower nectar robbing intensity but higher visitation by legitimate visitors (mainly <em>B. picipes</em>) and higher seed production. Nectar robbing significantly reduced seed production because it decreased pollinator visits. However, neither pollination nor seed production differed between plants with long and short corolla tubes when nectar robbers were excluded. This finding suggests that floral trait variation might not be driven by pollinators. Such variation among individual plants thus allows legitimate visitors and nectar robbers to segregate niches and enhances population defense against nectar robbing in unpredictable conditions.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/40/main.PMC10311112.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9737061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Leaf hydraulics coordinated with leaf economics and leaf size in mangrove species along a salinity gradient 红树林物种叶片水力学与叶片经济学和叶片大小沿盐度梯度的协调
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2022.01.002
Jing-Jing Cao , Jing Chen , Qing-Pei Yang , Yan-Mei Xiong , Wei-Zheng Ren , De-Liang Kong
{"title":"Leaf hydraulics coordinated with leaf economics and leaf size in mangrove species along a salinity gradient","authors":"Jing-Jing Cao ,&nbsp;Jing Chen ,&nbsp;Qing-Pei Yang ,&nbsp;Yan-Mei Xiong ,&nbsp;Wei-Zheng Ren ,&nbsp;De-Liang Kong","doi":"10.1016/j.pld.2022.01.002","DOIUrl":"10.1016/j.pld.2022.01.002","url":null,"abstract":"<div><p>Independence among leaf economics, leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments. However, it remains unclear whether the independence of the leaf traits revealed across species still holds within species, especially under stressed conditions. Here, a suite of traits in these dimensions were measured in leaves and roots of a typical mangrove species, <em>Ceriops tagal</em>, which grows in habitats with a similar sunny and hot environment but different soil salinity in southern China. Compared with <em>C. tagal</em> under low soil salinity, <em>C. tagal</em> under high soil salinity had lower photosynthetic capacity, as indicated directly by a lower leaf nitrogen concentration and higher water use efficiency, and indirectly by a higher investment in defense function and thinner palisade tissue; had lower water transport capacity, as evidenced by thinner leaf minor veins and thinner root vessels; and also had much smaller single leaf area. Leaf economics, hydraulics and leaf size of the mangrove species appear to be coordinated as one trait dimension, which likely stemmed from co-variation of soil water and nutrient availability along the salinity gradient. The intraspecific leaf trait relationship under a stressful environment is insightful for our understanding of plant adaption to the multifarious environments.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ec/45/main.PMC10311193.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9748555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile 代谢和转录组学分析阐明了药用兰花石斛茎中碳水化合物和次生代谢物的生物合成网络的新见解
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2022.10.004
Yu-Wen Zhang , Yu-Cen Shi , Shi-Bao Zhang
{"title":"Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile","authors":"Yu-Wen Zhang ,&nbsp;Yu-Cen Shi ,&nbsp;Shi-Bao Zhang","doi":"10.1016/j.pld.2022.10.004","DOIUrl":"https://doi.org/10.1016/j.pld.2022.10.004","url":null,"abstract":"<div><p><em>Dendrobium nobile</em> is an important medicinal and nutraceutical herb. Although the ingredients of <em>D. nobile</em> have been identified as polysaccharides, alkaloids, amino acids, flavonoids and bibenzyls, our understanding of the metabolic pathways that regulate the synthesis of these compounds is limited. Here, we used transcriptomic and metabolic analyses to elucidate the genes and metabolites involved in the biosynthesis of carbohydrate and several secondary metabolites in the stems of <em>D. nobile</em>. A total of 1005 metabolites and 31,745 genes were detected in the stems of <em>D. nobile</em>. The majority of these metabolites and genes were involved in the metabolism of carbohydrates (fructose, mannose, glucose, xylulose and starch), while some were involved in the metabolism of secondary metabolites (alkaloids, β-tyrosine, ferulic acid, 4-hydroxybenzoate and chrysin). Our predicted regulatory network indicated that five genes (<em>AROG</em>, <em>PYK</em>, <em>DXS</em>, <em>ACEE</em> and <em>HMGCR</em>) might play vital roles in the transition from carbohydrate to alkaloid synthesis. Correlation analysis identified that six genes (<em>ALDO</em>, <em>PMM</em>, <em>BGLX</em>, <em>EGLC</em>, <em>XYLB</em> and <em>GLGA</em>) were involved in carbohydrate metabolism, and two genes (<em>ADT</em> and <em>CYP73A</em>) were involved in secondary metabolite biosynthesis. Our analyses also indicated that phosphoenol-pyruvate (PEP) was a crucial bridge that connected carbohydrate to alkaloid biosynthesis. The regulatory network between carbohydrate and secondary metabolite biosynthesis established will provide important insights into the regulation of metabolites and biological systems in <em>Dendrobium</em> species.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49893556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The life of Xuan Zhou, founding father of the Gastrodia elata cultivation and industry in China 中国天麻栽培与产业之父宣周生平
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2023.03.010
Jian Wang
{"title":"The life of Xuan Zhou, founding father of the Gastrodia elata cultivation and industry in China","authors":"Jian Wang","doi":"10.1016/j.pld.2023.03.010","DOIUrl":"https://doi.org/10.1016/j.pld.2023.03.010","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49791588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots 开花植物分类与系统发育多样性的全球格局:生物多样性热点与冷点
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2023.01.009
Hong Qian , Jian Zhang , Meichen Jiang
{"title":"Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots","authors":"Hong Qian ,&nbsp;Jian Zhang ,&nbsp;Meichen Jiang","doi":"10.1016/j.pld.2023.01.009","DOIUrl":"10.1016/j.pld.2023.01.009","url":null,"abstract":"<div><p>Species diversity of angiosperms (flowering plants) varies greatly among regions. Geographic patterns of variation in species diversity are shaped by the interplay of ecological and evolutionary processes. Here, using a comprehensive data set for regional angiosperm floras across the world, we show geographic patterns of taxonomic (species) diversity, phylogenetic diversity, phylogenetic dispersion, and phylogenetic deviation (i.e., phylogenetic diversity after accounting for taxonomic diversity) across the world. Phylogenetic diversity is strongly and positively correlated with taxonomic diversity; as a result, geographic patterns of taxonomic and phylogenetic diversity across the world are highly similar. Areas with high taxonomic and phylogenetic diversity are located in tropical regions whereas areas with low taxonomic and phylogenetic diversity are located in temperate regions, particularly in Eurasia and North America, and in northern Africa. Similarly, phylogenetic dispersion is, in general, higher in tropical regions and lower in temperate regions. However, the geographic pattern of phylogenetic deviation differs substantially from those of taxonomic and phylogenetic diversity and phylogenetic dispersion. As a result, hotspots and coldspots of angiosperm diversity identified based on taxonomic and phylogenetic diversity and phylogenetic dispersion are incongruent with those identified based on phylogenetic deviations. Each of these metrics may be considered when selecting areas to be protected for their biodiversity.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/47/e0/main.PMC10311147.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9746555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Insights into cryptic speciation of quillworts in China 标题中国刺茅属植物的隐种研究
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2022.11.003
Yu-Feng Gu , Jiang-Ping Shu , Yi-Jun Lu , Hui Shen , Wen Shao , Yan Zhou , Qi-Meng Sun , Jian-Bing Chen , Bao-Dong Liu , Yue-Hong Yan
{"title":"Insights into cryptic speciation of quillworts in China","authors":"Yu-Feng Gu ,&nbsp;Jiang-Ping Shu ,&nbsp;Yi-Jun Lu ,&nbsp;Hui Shen ,&nbsp;Wen Shao ,&nbsp;Yan Zhou ,&nbsp;Qi-Meng Sun ,&nbsp;Jian-Bing Chen ,&nbsp;Bao-Dong Liu ,&nbsp;Yue-Hong Yan","doi":"10.1016/j.pld.2022.11.003","DOIUrl":"10.1016/j.pld.2022.11.003","url":null,"abstract":"<div><p>Cryptic species are commonly misidentified because of high morphological similarities to other species. One group of plants that may harbor large numbers of cryptic species is the quillworts (<em>Isoëtes</em> spp.), an ancient aquatic plant lineage. Although over 350 species of <em>Isoëtes</em> have been reported globally, only ten species have been recorded in China. The aim of this study is to better understand <em>Isoëtes</em> species diversity in China. For this purpose, we systematically explored the phylogeny and evolution of <em>Isoëtes</em> using complete chloroplast genome (plastome) data, spore morphology, chromosome number, genetic structure, and haplotypes of almost all Chinese <em>Isoëtes</em> populations. We identified three ploidy levels of <em>Isoëtes</em> in China—diploid (2<em>n</em> = 22), tetraploid (2<em>n</em> = 44), and hexaploid (2<em>n</em> = 66). We also found four megaspore and microspore ornamentation types in diploids, six in tetraploids, and three in hexaploids. Phylogenetic analyses confirmed that <em>I</em>. <em>hypsophila</em> as the ancestral group of the genus and revealed that <em>Isoëtes</em> diploids, tetraploids, and hexaploids do not form monophyletic clades. Most individual species possess a single genetic structure; however, several samples have conflicting positions on the phylogenetic tree based on SNPs and the tree based on plastome data. All 36 samples shared 22 haplotypes. Divergence time analysis showed that <em>I</em>. <em>hypsophila</em> diverged in the early Eocene (∼48.05 Ma), and most other <em>Isoëtes</em> species diverged 3–20 Ma. Additionally, different species of <em>Isoëtes</em> were found to inhabit different water systems and environments along the Yangtze River. These findings provide new insights into the relationships among <em>Isoëtes</em> species in China, where highly similar morphologic populations may harbor many cryptic species.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/7f/main.PMC10311115.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9748559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Siwalik plant megafossil diversity in the Eastern Himalayas: A review 喜马拉雅东部西瓦里克植物巨型化石多样性综述
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2022.12.003
Mahasin Ali Khan , Sumana Mahato , Robert A. Spicer , Teresa E.V. Spicer , Ashif Ali , Taposhi Hazra , Subir Bera
{"title":"Siwalik plant megafossil diversity in the Eastern Himalayas: A review","authors":"Mahasin Ali Khan ,&nbsp;Sumana Mahato ,&nbsp;Robert A. Spicer ,&nbsp;Teresa E.V. Spicer ,&nbsp;Ashif Ali ,&nbsp;Taposhi Hazra ,&nbsp;Subir Bera","doi":"10.1016/j.pld.2022.12.003","DOIUrl":"10.1016/j.pld.2022.12.003","url":null,"abstract":"<div><p>The Eastern Himalayas are renowned for their high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate past plant biodiversity preserved as fossils throughout the eastern Himalayan Siwalik succession (middle Miocene−early Pleistocene). Here, we present a summary of plant diversity records that document Neogene floristic and climate changes. We do this by compiling published records of megafossil plant remains, because these offer better spatial and temporal resolution than do palynological records. Analyses of the Siwalik floral assemblages based on the distribution of the nearest living relative taxa suggest that a tropical wet evergreen forest was growing in a warm humid monsoonal climate at the deposition time. This qualitative interpretation is also corroborated by published CLAMP (Climate Leaf Analysis Multivariate Program) analyses. Here, we also reconstruct the climate by applying a new common proxy WorldClim2 calibration. This allows the detection of subtle climate differences between floral assemblages free of artefacts introduced by using different methodologies and climate calibrations. An analysis of the Siwalik floras indicates that there was a gradual change in floral composition. The lower Siwalik assemblages provide evidence of a predominance of evergreen elements. An increase in deciduous elements in the floral composition is noticed towards the close of the middle Siwalik and the beginning of the upper Siwalik formation. This change reflects a climatic difference between Miocene and Plio-Pleistocene times. This review helps us to understand under what paleoenvironmental conditions plant diversity occurred and evolved in the eastern Himalayas throughout the Cenozoic.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/af/main.PMC10311196.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9737064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Does regional species diversity resist biotic invasions? 区域物种多样性是否能抵抗生物入侵?
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2022.09.004
Qinfeng Guo , Hong Qian , Jian Zhang
{"title":"Does regional species diversity resist biotic invasions?","authors":"Qinfeng Guo ,&nbsp;Hong Qian ,&nbsp;Jian Zhang","doi":"10.1016/j.pld.2022.09.004","DOIUrl":"10.1016/j.pld.2022.09.004","url":null,"abstract":"<div><p>The role of regional species diversity in large-scale species invasions has been largely controversial. On the one hand, it has been proposed that diversity may facilitate invasion (“diversity begets diversity”) because regions with higher diversity may indicate favorable conditions for many more species. On the other hand, high diversity may indicate high levels of niche occupation, thus making it more difficult for new species to invade. In the past, invasion biologists have evaluated how regional native and exotic richness are related. Here, we test whether the range size of exotic species may be constrained by regional native richness using plant data from three continental regions in the Northern Hemisphere, i.e., Europe, Eastern Asia, and North America. We found that regional native plant diversity is inversely related to the range size of exotic species. This result may be due to stronger species interactions such as competition in species-rich habitats that limit the establishment and spread of exotic species.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d1/f5/main.PMC10311084.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9743466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Honoring a legend: Celebrating the life and legacy of Professor Heng Li 纪念传奇:纪念李恒教授的一生和遗产
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2023.03.003
Hui-Jun Guo, Jin-Ling Huang, Yun-Heng Ji, Rong Li, Chun-Lin Long, Qin-Er Yang, Yong-Ping Yang, Ting-Shuang Yi
{"title":"Honoring a legend: Celebrating the life and legacy of Professor Heng Li","authors":"Hui-Jun Guo,&nbsp;Jin-Ling Huang,&nbsp;Yun-Heng Ji,&nbsp;Rong Li,&nbsp;Chun-Lin Long,&nbsp;Qin-Er Yang,&nbsp;Yong-Ping Yang,&nbsp;Ting-Shuang Yi","doi":"10.1016/j.pld.2023.03.003","DOIUrl":"10.1016/j.pld.2023.03.003","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b5/16/main.PMC10311184.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9743470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Patterns of floristic inventory and plant collections in Myanmar 缅甸植物区系调查和植物收集模式
IF 4.8 1区 生物学
Plant Diversity Pub Date : 2023-05-01 DOI: 10.1016/j.pld.2023.01.008
Thant Sin Aung , Alice C. Hughes , Phyo Kay Khine , Bo Liu , Xiao-Li Shen , Ke-Ping Ma
{"title":"Patterns of floristic inventory and plant collections in Myanmar","authors":"Thant Sin Aung ,&nbsp;Alice C. Hughes ,&nbsp;Phyo Kay Khine ,&nbsp;Bo Liu ,&nbsp;Xiao-Li Shen ,&nbsp;Ke-Ping Ma","doi":"10.1016/j.pld.2023.01.008","DOIUrl":"10.1016/j.pld.2023.01.008","url":null,"abstract":"<div><p>Myanmar is one of the most biodiverse countries in the Asia–Pacific region due to a wide range of climatic and environmental heterogeneity. Floristic diversity in Myanmar is largely unknown, resulting in a lack of comprehensive conservation plans. We developed a database of higher plants in Myanmar derived from herbarium specimens and literature sources, and analyzed patterns of diversity inventories and collection inconsistencies, aiming to provide a baseline floristic data of Myanmar and act as a guide for future research efforts. We collected 1,329,354 records of 16,218 taxa. Results show that the collection densities at the township level was variable, with 5% of townships having no floristic collections. No ecoregion had an average collection density of greater than 1 specimen/km<sup>2</sup> and the lowest collection density was found in the Kayah-Karen Montane Rainforests, which covered 8% of Myanmar's total area. The highest sampling densities were found in Mandalay Region, Chin State, and Yangon Region. Despite floristic collections over the past three centuries, knowledge of the distribution of the vast majority of plant taxa remained limited, particularly for gymnosperms, pteridophytes, and bryophytes. More botanical surveys and further analyses are needed to better describe Myanmar's floristic diversity. An important strategy to promote knowledge of the biodiversity patterns in Myanmar is to improve the collection and digitalization of specimens and to strengthen cooperation among countries.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/43/38/main.PMC10311185.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9746554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信