{"title":"Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat.","authors":"Yunzhen Li, Liujie Jin, Xinyu Liu, Chao He, Siteng Bi, Sulaiman Saeed, Wenhao Yan","doi":"10.1016/j.pld.2024.02.005","DOIUrl":"10.1016/j.pld.2024.02.005","url":null,"abstract":"<p><p>Vernalization is necessary for winter wheat to flower. However, it is unclear whether vernalization is also required for spring wheat, which is frequently sown in fall, and what molecular mechanisms underlie the vernalization response in wheat varieties. In this study, we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties. For this purpose, we determined how major vernalization genes (<i>VRN1</i>, <i>VRN2</i>, and <i>VRN3</i>) respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression. We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties. We found that in winter wheat, but not in spring wheat, <i>VRN1</i> expression decreases when returned to warm temperature following vernalization. This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3 (H3K27me3) and tri-methylation of lysine 4 on histone H3 (H3K4me3) at the <i>VRN1</i> gene. Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes, including those involved in leucine catabolism, cysteine biosynthesis, and flavonoid biosynthesis. These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 3","pages":"386-394"},"PeriodicalIF":4.6,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2024-02-08eCollection Date: 2024-05-01DOI: 10.1016/j.pld.2024.02.003
Ya-Dong Qie, Qi-Wei Zhang, Scott A M McAdam, Kun-Fang Cao
{"title":"Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species.","authors":"Ya-Dong Qie, Qi-Wei Zhang, Scott A M McAdam, Kun-Fang Cao","doi":"10.1016/j.pld.2024.02.003","DOIUrl":"10.1016/j.pld.2024.02.003","url":null,"abstract":"<p><p>Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant. However, very little is known about the stomatal sensitivity to vapour pressure deficit (VPD) in mangroves, and its co-ordination with stomatal morphology and leaf hydraulic traits. We measured the stomatal response to a step increase in VPD <i>in situ</i>, stomatal anatomy, leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size. We aimed to answer two questions: (1) Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves? with a consideration of possible influence of genome size on stomatal morphology; and (2) do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves? We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits. Smaller, denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae, and stomata size negatively and vein density positively correlated with genome size. Less negative leaf osmotic pressure at the full turgor (π<sub>o</sub>) was related to higher operating steady-state stomatal conductance (<i>g</i><sub>s</sub>); and a higher leaf capacitance (<i>C</i><sub>leaf</sub>) and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD. In addition, stomatal responsiveness to VPD was indirectly affected by leaf morphological traits, which were affected by site salinity and consequently leaf water status. Our results demonstrate that mangroves display a unique relationship between genome size, stomatal size and vein packing, and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology. Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 3","pages":"395-405"},"PeriodicalIF":4.8,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-12-01DOI: 10.1016/j.pld.2023.12.001
Bailong Zhao
{"title":"pyIFPNI: A package for querying and downloading plant fossil data from the IFPNI","authors":"Bailong Zhao","doi":"10.1016/j.pld.2023.12.001","DOIUrl":"https://doi.org/10.1016/j.pld.2023.12.001","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"102 s406","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-12-01DOI: 10.1016/j.pld.2023.12.002
Xing-jin He
{"title":"Integrating high-volume molecular and morphological data into the evolutionary studies of Allium","authors":"Xing-jin He","doi":"10.1016/j.pld.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.pld.2023.12.002","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"310 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-12-01DOI: 10.1016/j.pld.2023.11.004
Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian
{"title":"Global patterns and ecological drivers of taxonomic and phylogenetic endemism in angiosperm genera","authors":"Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian","doi":"10.1016/j.pld.2023.11.004","DOIUrl":"https://doi.org/10.1016/j.pld.2023.11.004","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":" 47","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138611307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-11-18eCollection Date: 2024-01-01DOI: 10.1016/j.pld.2023.11.001
Changwei Bi, Ning Sun, Fuchuan Han, Kewang Xu, Yong Yang, David K Ferguson
{"title":"The first mitogenome of Lauraceae (<i>Cinnamomum chekiangense</i>).","authors":"Changwei Bi, Ning Sun, Fuchuan Han, Kewang Xu, Yong Yang, David K Ferguson","doi":"10.1016/j.pld.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.pld.2023.11.001","url":null,"abstract":"<p><p>•The first reported mitochondrial genome (<i>Cinnamomum chekiangense</i>) of the Lauraceae family.•The mitogenome of <i>C. chekiangense</i> retains almost all of the ancestral protein-coding genes and has the highest RNA editing number in angiosperms.•Both of the plastid and mitochondrial phylogenetic trees support the magnoliids as a sister group of monocots and eudicots.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 1","pages":"144-148"},"PeriodicalIF":4.8,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The worldwide allometric relationship in anatomical structures for plant roots","authors":"Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong","doi":"10.1016/j.pld.2023.05.002","DOIUrl":"10.1016/j.pld.2023.05.002","url":null,"abstract":"<div><p>The cortex (i.e., absorptive tissue) and stele (transportive vascular tissue) are fundamental to the function of plant roots. Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology, physiology, and plant responses to global environmental changes. In this review, we first compile a large data set on anatomical traits in absorptive roots, including cortex thickness and stele radius, across 698 observations and 512 species. Using this data set, we reveal a common root allometry in absorptive root structures, i.e., cortex thickness increases much faster than stele radius with increasing root diameter (hereafter, root allometry). Root allometry is further validated within and across plant growth forms (woody, grass, and liana species), mycorrhiza types (arbuscular mycorrhiza, ectomycorrhiza, and orchid mycorrhizas), phylogenetic gradients (from ferns to Orchidaceae), and environmental change scenarios (e.g., elevation of atmospheric CO<sub>2</sub> concentration and nitrogen fertilization). These findings indicate that root allometry is common in plants. Importantly, root allometry varies greatly across species. We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms. We further discuss ecological and evolutionary implications of root allometry. Finally, we propose several important research directions that should be pursued regarding root allometry.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 6","pages":"Pages 621-629"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468265923000793/pdfft?md5=be6de406993fea796dc3af7ddd7c0452&pid=1-s2.0-S2468265923000793-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136370963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant DiversityPub Date : 2023-11-01DOI: 10.1016/j.pld.2023.10.002
Thant Sin Aung , Alice C. Hughes , Phyo Kay Khine , Bo Liu , Xiao-Li Shen , Ke-Ping Ma
{"title":"Corrigendum to Patterns of floristic inventory and plant collections in Myanmar [Plant Divers. 45 (3) (2023) 302–308]","authors":"Thant Sin Aung , Alice C. Hughes , Phyo Kay Khine , Bo Liu , Xiao-Li Shen , Ke-Ping Ma","doi":"10.1016/j.pld.2023.10.002","DOIUrl":"10.1016/j.pld.2023.10.002","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 6","pages":"Pages 757-758"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468265923001300/pdfft?md5=932e3e91575bf9de6ffa150597c70f9a&pid=1-s2.0-S2468265923001300-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}