Zhi-Li Zhou, Tial C Ling, Jian-Li Zhao, Xin-Zhi Wang, Lin-Lin Wang, Li Li, Wen-Jing Wang, Dong-Rui Jia, Zhi-Kun Wu, Xu-Dong Sun, Yong-Ping Yang, Yuan-Wen Duan
{"title":"Parallel loss of anthocyanins triggers the incipient sympatric speciation in an alpine ginger.","authors":"Zhi-Li Zhou, Tial C Ling, Jian-Li Zhao, Xin-Zhi Wang, Lin-Lin Wang, Li Li, Wen-Jing Wang, Dong-Rui Jia, Zhi-Kun Wu, Xu-Dong Sun, Yong-Ping Yang, Yuan-Wen Duan","doi":"10.1016/j.pld.2025.03.004","DOIUrl":null,"url":null,"abstract":"<p><p>Change of flower color can readily lead to a shift in pollinators, potentially causing pollinator mediated reproductive isolation or even speciation. Here, we examined the ecological and evolutionary consequences of flower color polymorphism in <i>Roscoea cautleoides</i>, an alpine ginger with sympatric distribution of purple- and yellow-flowered plants. Variations in pollinator visitation and specialization to the flower color contributed greatly to pre-zygotic reproductive isolation, with post-zygotic isolation also observed in reciprocal pollination. Yellow-flowered plants evolved independently from purple-flowered plants in two populations due to the absence of anthocyanins, as supported by metabolic, expression, and genetic analysis. Despite early genetic divergence between the two-flower-colored plants, highly differentiated genes were associated with reproduction and stress, while highly selective genes were enriched in stress. Our results suggest that parallel loss of anthocyanins leads to flower color polymorphism in different populations of <i>R. cautleoides</i>, with pollinator preference contributing to reproductive isolation and subsequent genetic differentiation, indicating the process of incipient speciation triggered by flower color changes with sympatric distribution.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 3","pages":"429-439"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146858/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2025.03.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Change of flower color can readily lead to a shift in pollinators, potentially causing pollinator mediated reproductive isolation or even speciation. Here, we examined the ecological and evolutionary consequences of flower color polymorphism in Roscoea cautleoides, an alpine ginger with sympatric distribution of purple- and yellow-flowered plants. Variations in pollinator visitation and specialization to the flower color contributed greatly to pre-zygotic reproductive isolation, with post-zygotic isolation also observed in reciprocal pollination. Yellow-flowered plants evolved independently from purple-flowered plants in two populations due to the absence of anthocyanins, as supported by metabolic, expression, and genetic analysis. Despite early genetic divergence between the two-flower-colored plants, highly differentiated genes were associated with reproduction and stress, while highly selective genes were enriched in stress. Our results suggest that parallel loss of anthocyanins leads to flower color polymorphism in different populations of R. cautleoides, with pollinator preference contributing to reproductive isolation and subsequent genetic differentiation, indicating the process of incipient speciation triggered by flower color changes with sympatric distribution.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry