{"title":"Superconductivity and spin density wave in AA stacked bilayer graphene","authors":"A.O. Sboychakov, A.L. Rakhmanov, A.V. Rozhkov","doi":"10.1016/j.physe.2024.116118","DOIUrl":"10.1016/j.physe.2024.116118","url":null,"abstract":"<div><div>This work theoretically analyzes electronic ordering in AA-stacked bilayer graphene and the role of the Coulomb interaction in these many-body phenomena. Using the random phase approximation to account for screening, we find intra-layer effective interactions to be much stronger than inter-layer interactions; under certain circumstances, the latter may also become attractive. At zero doping, the Coulomb repulsion stabilizes the spin-density wave state, with a Néel temperature in the tens of Kelvin. While dominant in the undoped system, the spin-density wave is destroyed by sufficiently strong doping and a superconducting phase emerges. We find that the effective Coulomb inter-layer interaction can give rise to superconductivity. However, the corresponding critical temperature is negligibly small, and phonon-mediated attraction must be introduced to observe it. Strong intra-layer repulsion suppresses order parameters that couple two intra-layer electrons. We point out a possible superconducting state with finite Cooper pair momentum.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116118"},"PeriodicalIF":2.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piotr Graczyk , Maria Pugaczowa-Michalska , Maciej Krawczyk
{"title":"Generation of femtosecond spin-polarized current pulses at Fe/MgO interface by quasi-static voltage","authors":"Piotr Graczyk , Maria Pugaczowa-Michalska , Maciej Krawczyk","doi":"10.1016/j.physe.2024.116120","DOIUrl":"10.1016/j.physe.2024.116120","url":null,"abstract":"<div><div>The generation of short spin-current pulses is essential for fast spintronic devices. So far, spin current pulses are generated by femtosecond laser pulses which drive spins from a ferromagnetic metal layer. However, the need for miniaturization, simplicity and energy efficiency favour electric-field control of spintronic devices over optic or thermal control. Here, we combine ab initio calculations of electronic density of states at MgO/Fe interface with continuous model for charge transport to investigate the dynamics of the spin-dependent potential. We demonstrate that the voltage-driven instability of the electronic band structure due to the electronic resonant states at the Fe/MgO interface results in the generation of the femtosecond spin-polarized current pulse with the spin polarization up to <span><math><mrow><mi>P</mi><mo>=</mo><mn>7</mn></mrow></math></span> 00 % that propagates from the interface to the bulk. The dynamics of the current pulses driven by the Stoner instability depends neither on the dielectric relaxation time nor on the details of how the instability is achieved by changing the voltage, i.e. as long as the voltage changes are slow (quasi-static) with respect to the time determined by the spin diffusion constant, being of the order of fs. The presence of the instability can be detected by THz time-domain spectroscopy or pump-probe techniques.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116120"},"PeriodicalIF":2.9,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermoelectric properties of MoS2-MoTe2 and MoS2-MoSe2lateral hetero-structures: The effects of external magnetic, transverse electric fields and nanoribbon width","authors":"Mona Abdi , Bandar Astinchap , Farhad Khoeini","doi":"10.1016/j.physe.2024.116119","DOIUrl":"10.1016/j.physe.2024.116119","url":null,"abstract":"<div><div>Extensive research is underway to improve the thermoelectric properties of materials by enhancing the figure of merit (ZT). In this study, we are investigating the thermoelectric properties of MoS<sub>2</sub>/MoTe<sub>2</sub> and MoS<sub>2</sub>/MoSe<sub>2</sub> lateral heterostructures (LH-S) under the influence of external magnetic fields (EMF) and transverse electric fields (TEF). We employ the non-equilibrium Green's function (N-EGF) and tight-binding (TB) methods for our analysis. The results obtained indicate that the ZT for MoS<sub>2</sub>-MoTe<sub>2</sub> and MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S enhanced with an increase in the TEF. The ZT of MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S increases near room temperature, while the ZT of MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S increases with an increase in EMF across the entire temperature range. Additionally, the ZT for MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S increases with an increase in the nanoribbon width, whereas for MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S, it decreases. The results reveal that the semiconductor type of MoS<sub>2</sub>-MoSe<sub>2</sub> and MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S changes from n-type to p-type when subjected to EMF and transverse TEF. The examination of the temperature dependence of ZT in the presence of TEF and EMF for MoS<sub>2</sub>-MoTe<sub>2</sub> and MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S indicates that these structures are highly promising candidates for use in electrical devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116119"},"PeriodicalIF":2.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transport through a monolayer-tube junction: Sheet-to-tube spin current","authors":"Yuma Kitagawa , Yuta Suzuki , Shin-ichiro Tezuka , Hiroshi Akera","doi":"10.1016/j.physe.2024.116111","DOIUrl":"10.1016/j.physe.2024.116111","url":null,"abstract":"<div><div>We develop a method to calculate the electron flow between an arbitrary atomic monolayer sheet and an arbitrary tube by expressing the corresponding sheet-tube tunneling matrix elements with those between sheets. We use this method to calculate the spin current from a monolayer silicene sheet with sublattice-staggered current-induced spin polarization to a silicene tube. The calculated sheet-to-tube spin current exhibits an oscillation as a function of the tube circumferential length because the Fermi points in the tube cross the Fermi circle in the sheet. Furthermore, the spin current with spin in the out-of-plane direction, which is absent in the sheet-sheet junction (including twisted sheets) with <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> rotational symmetry, appears in an oscillating form in the tube-sheet junction due to the broken <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> rotational symmetry. This is an example of the symmetry manipulation which realizes switching a particular component of the spin current.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116111"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shalini Kumari , Neha Dhull , Weichang Lin , Zonghuan Lu , Joan Redwing , Toh-Ming Lu , Gwo-Ching Wang
{"title":"In-plane and out-of-plane domain orientation dispersions in 1 to 3 monolayers epitaxial WS2 and MoS2 films on GaN(0001) film/sapphire(0001)","authors":"Shalini Kumari , Neha Dhull , Weichang Lin , Zonghuan Lu , Joan Redwing , Toh-Ming Lu , Gwo-Ching Wang","doi":"10.1016/j.physe.2024.116117","DOIUrl":"10.1016/j.physe.2024.116117","url":null,"abstract":"<div><div>Transition-metal dichalcogenides and their heterostructures have attractive potential applications in electronics and optoelectronics. Wafer scale 1 to 3 monolayers WS<sub>2</sub> and MoS<sub>2</sub> ultrathin films on GaN/sapphire substrates were grown by metal organic chemical vapor deposition. Azimuthal reflection high-energy electron diffraction (ARHEED) was used to characterize the long-range order of these TMDC ultrathin films. The RHEED patterns of WS<sub>2</sub> and MoS<sub>2</sub> show stripes and arcs but the MoS<sub>2</sub> on GaN shows sharp spots in addition to stripes and arcs. The 2D map constructed from ARHEED patterns shows that WS<sub>2</sub> is epitaxial and has an in-plane domain orientation dispersion. For the MoS<sub>2</sub> on GaN/sapphire substrate, the 2D map shows concentric continuous rings for each diffraction order of MoS<sub>2</sub> and GaN indicating that the in-plane MoS<sub>2</sub> domain orientation and GaN nanocrystals are random. The out-of-plane orientation dispersion of MoS<sub>2</sub> on the GaN substrate is larger than that of WS<sub>2</sub> on the GaN substrate. The observations of stripes, arcs, and spots from RHEED patterns and the 2D maps reveal the deviation of ultrathin epitaxial films from its perfect epitaxy, especially the TMDC domain orientation dispersion over a large area. These rich findings from 2D maps broaden the application of ARHEED in more than one monolayer thick 2D materials.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116117"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rogue-wave statistics in Anderson chains","authors":"M.F.V. Oliveira , A.M.C. Souza , M.L. Lyra , F.A.B.F. de Moura , G.M.A. Almeida","doi":"10.1016/j.physe.2024.116114","DOIUrl":"10.1016/j.physe.2024.116114","url":null,"abstract":"<div><div>The 1D Anderson model featuring uncorrelated diagonal disorder is considered. The wavefunction statistics associated to transitions between distinct locations is analyzed. In the presence of mild disorder, the local squared wavefunctions, that is occupation probabilities, obey exponential statistics. When disorder is high, amplitudes measured near the input site are well described by Rician distributions, a form of sub-exponential statistics, due to the influence of strongly localized modes. This results in a reduced likelihood of rogue wave events. When the statistics is taken over various disorder realizations or locations, the lack of knowledge over the rate of the exponential processes acting locally yields long-tailed distributions. As a consequence, rogue waves become more frequent at locations closer to the input for increasing disorder strength. Our findings can be used to assess the occurrence of extreme events as well as the degree of localization over a broad class of disordered models.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116114"},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Aghalli , H. Khandan Fadafan , M.B. Bagherieh Najjar
{"title":"Characterization of Co-doped Ni-Mn spinel nanoferrites: A Multi-faceted evaluation of structural, optical, elastic, and magnetic properties","authors":"B. Aghalli , H. Khandan Fadafan , M.B. Bagherieh Najjar","doi":"10.1016/j.physe.2024.116112","DOIUrl":"10.1016/j.physe.2024.116112","url":null,"abstract":"<div><div>This study presents the synthesis and comprehensive evaluation of nanocrystalline Co<sub>x</sub>Ni<sub>0.5-x</sub>Mn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> (0.0 ≤ x ≤ 0.5) ferrites. Utilizing a variety of analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV–Vis) spectroscopy, field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM), we characterized the structural, optical, elastic, and magnetic properties of the synthesized nanoparticles. Our findings reveal that increasing Co content leads to a systematic increase in lattice constant from 8.33 Å to 8.39 Å and influences the crystallite size, which ranges between 10 and 15 nm as determined by XRD. Notably, the band gaps of these nanoparticles span from 2.8 to 3.6 eV, varying with Co concentration. Magnetic measurements indicate a transition from superparamagnetic-like behavior at x = 0 to enhanced saturation magnetization, remanence, and coercivity with higher Co content. The novelty of this research lies in the detailed correlation between Co substitution and the resultant changes in multiple physical properties of NiMn nanoferrite, offering potential applications in various technological fields such as magnetic storage, sensors, and biomedical applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116112"},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Jing He , Jia-Bei Dong , Ying Zhang , Qin-Yue Cao , Ling-Xiao Liu , Jun-Yi Gu , Min Hua , Jia-Ren Yuan , Xiao-Hong Yan
{"title":"P3S nanoribbons with bi-directional superior spin thermoelectric properties","authors":"Jing-Jing He , Jia-Bei Dong , Ying Zhang , Qin-Yue Cao , Ling-Xiao Liu , Jun-Yi Gu , Min Hua , Jia-Ren Yuan , Xiao-Hong Yan","doi":"10.1016/j.physe.2024.116116","DOIUrl":"10.1016/j.physe.2024.116116","url":null,"abstract":"<div><div>To meet the demands of low-power micromaterials applications, the generation of pure spin currents in spintronics by utilizing an effective thermal spin conversion mechanism has become a hot topic among researchers. In this paper, based on the newly reported novel 2D P<sub>3</sub>S monolayer, various P<sub>3</sub>S nanoribbons with different edge atom arrangements are formed by one-dimensional tailoring. Intriguingly, the original nonmagnetism is broken in both armchair and zigzag orientations, introducing ferromagnetism contributed mainly by the 3<em>p</em> orbitals of the edge P atoms. More importantly, all bare nanoribbons exhibit peculiar transmission spectra with transmission peaks of opposite spin components located on both sides of the Fermi level. This apparent bipolar magnetic semiconductor property leads to a considerable spin Seebeck coefficient <span><math><mrow><msub><mi>S</mi><mi>s</mi></msub></mrow></math></span> of ∼3 mV/K, which successfully suppresses the charge current and excites a giant spin current. Furthermore, the significant spin-dependent Seebeck effect is robust to width. The bi-directional superior spin thermoelectric properties, simple clipping method, and width robustness make the P<sub>3</sub>S nanoribbons promising and competitive in spintronic devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116116"},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature dependence of the electron quantum lifetime in InGaAs/GaAs double quantum well: Fukuyama-Abrahams mechanism","authors":"S.V. Gudina, Yu.G. Arapov, V.N. Neverov, A.P. Savelyev, N.S. Sandakov, N.G. Shelushinina, M.V. Yakunin","doi":"10.1016/j.physe.2024.116113","DOIUrl":"10.1016/j.physe.2024.116113","url":null,"abstract":"<div><div>In the n-InGaAs/GaAs double quantum well, the suppression of resonant resistance by an in-plane magnetic field <em>B</em> ≤ 9 T in the temperature range <em>T</em> = (1.8–70) K is studied. The electron quantum lifetime, <em>τ</em><sub><em>q</em></sub>, is determined and the contributions of various scattering mechanisms to <em>τ</em><sub><em>q</em></sub>(<em>T</em>) are separated. It is shown that the observed nonmonotonic temperature dependence of the electron quantum lifetime is due to a combination of the interference contribution from the exchange electron-electron interaction in the ballistic regime and the inelastic electron-electron scattering in the diffusion regime (Fukuyama-Abrahams mechanism).</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116113"},"PeriodicalIF":2.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruixue Bai , Yaojie Zhu , Xilin Zhang , Yulun Liu , Zuowei Yan , Hui Ma , Chongyun Jiang
{"title":"The enhanced characteristics of bipolar phototransistor with huge amplification","authors":"Ruixue Bai , Yaojie Zhu , Xilin Zhang , Yulun Liu , Zuowei Yan , Hui Ma , Chongyun Jiang","doi":"10.1016/j.physe.2024.116110","DOIUrl":"10.1016/j.physe.2024.116110","url":null,"abstract":"<div><div>Heterojunction devices based on low-dimensional materials have the potential for convenient and efficient photodetection applications. In this study, we demonstrate a van der Waals (vdW) heterojunction device constructed by <em>p</em>-ZrGeTe<sub>4</sub> and <em>n</em>-MoS<sub>2</sub>. Forming a <em>p-n</em> junction, the response speed of the device increased by 6 orders of magnitude compared to devices with individual MoS<sub>2</sub>. To further improve the responsivity of the device, a bipolar phototransistor (PTD) was prepared based on the <em>p-n</em> junction. The PTD achieves the photocurrent gain of almost 40. This PTD achieves high responsivity of 1.48 A W<sup>−1</sup>, and the corresponding specific detectivity can reach 3 × 10<sup>14</sup> Jones in low frequencies. Under low frequencies, the noise of the device is dominated by generation–recombination noise; and as the frequency increases, it gradually becomes dominated by 1/<em>f</em> noise. The PTD is competitive in optoelectronics and promising in high-performance integrated devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116110"},"PeriodicalIF":2.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}