Omar M. Dawood , Mahir N. Thameel , Alaa A. Al-Jobory , Sundus Alzuhairi
{"title":"褶皱CVD石墨烯中应变与掺杂的解耦策略及总有效应变评估","authors":"Omar M. Dawood , Mahir N. Thameel , Alaa A. Al-Jobory , Sundus Alzuhairi","doi":"10.1016/j.physe.2025.116311","DOIUrl":null,"url":null,"abstract":"<div><div>The determination of strain levels in chemical vapor deposition (CVD) graphene is essential to maximize its electronic and optoelectronic applications. The combination of Raman shift effects with doping effects creates difficulties when attempting to precisely extract accurate deformation-related measurements. This research decouples strain from doping using Kelvin Probe Force Microscopy (KPFM), Raman spectroscopy, and high-resolution strain mapping. The research methodology allows precise mechanical strain measurement by properly distinguishing Raman shift effects from doping to enhance strain detection precision. Surface potential difference measured by KPFM enables determination of doping concentration values. Calibration factors applied to G-band and 2D-band Raman shifts enable the removal of doping effects so actual mechanical strain values become accessible. The Raman-derived in-plane strain measurement ranges from −0.34 % to −0.53 % for the G-band and −0.35 % to −0.67 % for the 2D-band. Substrate-induced distortions and wrinkle-induced out-of-plane deformations create compressive residual strain which is confirmed through curvature analysis and AFM topography measurements. The analysis from polarized Raman spectroscopy demonstrates that strain components for tension and compression follow the orientations of the wrinkles and deformations in the material. This advanced strain-doping decoupling method creates an exact measurement method to determine true graphene strain which may help accelerate use of strained graphene in electronic and optoelectronic devices and flexible systems as well as sensors.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"173 ","pages":"Article 116311"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new decoupling strategy for strain and doping in wrinkled CVD graphene with total effective strain evaluation\",\"authors\":\"Omar M. Dawood , Mahir N. Thameel , Alaa A. Al-Jobory , Sundus Alzuhairi\",\"doi\":\"10.1016/j.physe.2025.116311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The determination of strain levels in chemical vapor deposition (CVD) graphene is essential to maximize its electronic and optoelectronic applications. The combination of Raman shift effects with doping effects creates difficulties when attempting to precisely extract accurate deformation-related measurements. This research decouples strain from doping using Kelvin Probe Force Microscopy (KPFM), Raman spectroscopy, and high-resolution strain mapping. The research methodology allows precise mechanical strain measurement by properly distinguishing Raman shift effects from doping to enhance strain detection precision. Surface potential difference measured by KPFM enables determination of doping concentration values. Calibration factors applied to G-band and 2D-band Raman shifts enable the removal of doping effects so actual mechanical strain values become accessible. The Raman-derived in-plane strain measurement ranges from −0.34 % to −0.53 % for the G-band and −0.35 % to −0.67 % for the 2D-band. Substrate-induced distortions and wrinkle-induced out-of-plane deformations create compressive residual strain which is confirmed through curvature analysis and AFM topography measurements. The analysis from polarized Raman spectroscopy demonstrates that strain components for tension and compression follow the orientations of the wrinkles and deformations in the material. This advanced strain-doping decoupling method creates an exact measurement method to determine true graphene strain which may help accelerate use of strained graphene in electronic and optoelectronic devices and flexible systems as well as sensors.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"173 \",\"pages\":\"Article 116311\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001419\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001419","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A new decoupling strategy for strain and doping in wrinkled CVD graphene with total effective strain evaluation
The determination of strain levels in chemical vapor deposition (CVD) graphene is essential to maximize its electronic and optoelectronic applications. The combination of Raman shift effects with doping effects creates difficulties when attempting to precisely extract accurate deformation-related measurements. This research decouples strain from doping using Kelvin Probe Force Microscopy (KPFM), Raman spectroscopy, and high-resolution strain mapping. The research methodology allows precise mechanical strain measurement by properly distinguishing Raman shift effects from doping to enhance strain detection precision. Surface potential difference measured by KPFM enables determination of doping concentration values. Calibration factors applied to G-band and 2D-band Raman shifts enable the removal of doping effects so actual mechanical strain values become accessible. The Raman-derived in-plane strain measurement ranges from −0.34 % to −0.53 % for the G-band and −0.35 % to −0.67 % for the 2D-band. Substrate-induced distortions and wrinkle-induced out-of-plane deformations create compressive residual strain which is confirmed through curvature analysis and AFM topography measurements. The analysis from polarized Raman spectroscopy demonstrates that strain components for tension and compression follow the orientations of the wrinkles and deformations in the material. This advanced strain-doping decoupling method creates an exact measurement method to determine true graphene strain which may help accelerate use of strained graphene in electronic and optoelectronic devices and flexible systems as well as sensors.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures