Fano–Rashba effect in the presence of Majorana bound states

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
B. Grez , J.P. Ramos-Andrade , P.A. Orellana
{"title":"Fano–Rashba effect in the presence of Majorana bound states","authors":"B. Grez ,&nbsp;J.P. Ramos-Andrade ,&nbsp;P.A. Orellana","doi":"10.1016/j.physe.2025.116306","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the influence of Majorana bound states on the Fano–Rashba effect in a two-channel Fano–Anderson model. Employing Green’s function formalism and the equation of motion method, we compute the transmission through the quantum dot and the density of states. Our analysis reveals that the Majorana bound states, localized at the ends of the topological superconductor nanowire, penetrate into the quantum dot and interact with the bound states in the continuum, thereby altering the interference pattern in the electronic transmission profile. Furthermore, we explore the robustness of the bound state in the continuum concerning its connection to Majorana bound states and the energy induced by the perpendicular component of the magnetic field. We posit that our findings contribute to a deeper comprehension of the Fano–Rashba effect in a two-channel quantum dot coupled to a topological superconducting nanowire.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"173 ","pages":"Article 116306"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001365","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the influence of Majorana bound states on the Fano–Rashba effect in a two-channel Fano–Anderson model. Employing Green’s function formalism and the equation of motion method, we compute the transmission through the quantum dot and the density of states. Our analysis reveals that the Majorana bound states, localized at the ends of the topological superconductor nanowire, penetrate into the quantum dot and interact with the bound states in the continuum, thereby altering the interference pattern in the electronic transmission profile. Furthermore, we explore the robustness of the bound state in the continuum concerning its connection to Majorana bound states and the energy induced by the perpendicular component of the magnetic field. We posit that our findings contribute to a deeper comprehension of the Fano–Rashba effect in a two-channel quantum dot coupled to a topological superconducting nanowire.
法诺-拉什巴效应在马约拉纳束缚州的存在
本文研究了双通道Fano-Anderson模型中Majorana束缚态对Fano-Rashba效应的影响。采用格林函数形式和运动方程方法,计算了量子点的传输量和态密度。我们的分析表明,位于拓扑超导体纳米线末端的马约拉纳束缚态穿透到量子点中,并与连续统中的束缚态相互作用,从而改变了电子传输剖面中的干涉模式。此外,我们还探讨了连续统中束缚态与马约拉纳束缚态的联系以及磁场垂直分量所引起的能量的鲁棒性。我们假设我们的发现有助于更深入地理解与拓扑超导纳米线耦合的双通道量子点中的Fano-Rashba效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信