碳纳米管封装铝纳米结构的结构稳定性和多重动力学行为

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Jianan Yuan , Chi Ding , Jianfu Li , Yong Liu , Jiani Lin , Xiaoli Wang
{"title":"碳纳米管封装铝纳米结构的结构稳定性和多重动力学行为","authors":"Jianan Yuan ,&nbsp;Chi Ding ,&nbsp;Jianfu Li ,&nbsp;Yong Liu ,&nbsp;Jiani Lin ,&nbsp;Xiaoli Wang","doi":"10.1016/j.physe.2025.116308","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon nanotubes offer one-dimensional nanoconfinement space for metals, resulting in functional materials with novel physical properties. In this study, we successfully predicted a one-dimensional stable structure of aluminum confined within Carbon nanotubes using the MAGUS confined space search method. According to the phonon spectrum, this configuration is mechanically stable at ambient pressure and temperature. However, when the temperature reaches 350 K, aluminum atoms exhibit rotational and translational collective motions, eventually escaping from the open-boundary nanotube. By calculating the diffusion energy barrier of the aluminum, we elucidated the mechanism underlying these collective motion patterns. Through band structure calculations, we discovered strong orbital hybridization between aluminum and Carbon nanotubes. Our research reveals the stable form and unique dynamic and electrical properties of aluminum metal in Carbon nanotubes, providing new insights for the study of metal- Carbon nanotube composites.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"173 ","pages":"Article 116308"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural stability and multiple dynamic behaviors of aluminum nanostructures encapsulated in carbon nanotubes\",\"authors\":\"Jianan Yuan ,&nbsp;Chi Ding ,&nbsp;Jianfu Li ,&nbsp;Yong Liu ,&nbsp;Jiani Lin ,&nbsp;Xiaoli Wang\",\"doi\":\"10.1016/j.physe.2025.116308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon nanotubes offer one-dimensional nanoconfinement space for metals, resulting in functional materials with novel physical properties. In this study, we successfully predicted a one-dimensional stable structure of aluminum confined within Carbon nanotubes using the MAGUS confined space search method. According to the phonon spectrum, this configuration is mechanically stable at ambient pressure and temperature. However, when the temperature reaches 350 K, aluminum atoms exhibit rotational and translational collective motions, eventually escaping from the open-boundary nanotube. By calculating the diffusion energy barrier of the aluminum, we elucidated the mechanism underlying these collective motion patterns. Through band structure calculations, we discovered strong orbital hybridization between aluminum and Carbon nanotubes. Our research reveals the stable form and unique dynamic and electrical properties of aluminum metal in Carbon nanotubes, providing new insights for the study of metal- Carbon nanotube composites.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"173 \",\"pages\":\"Article 116308\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001389\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001389","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米管为金属提供了一维的纳米约束空间,从而产生了具有新颖物理特性的功能材料。在本研究中,我们使用MAGUS受限空间搜索方法成功地预测了碳纳米管内铝的一维稳定结构。根据声子谱,这种结构在环境压力和温度下机械稳定。然而,当温度达到350 K时,铝原子表现出旋转和平移的集体运动,最终从开边界纳米管中逸出。通过计算铝的扩散能垒,我们阐明了这些集体运动模式的机制。通过波段结构计算,我们发现铝和碳纳米管之间存在很强的轨道杂化。我们的研究揭示了碳纳米管中金属铝的稳定形态和独特的动态和电学性能,为金属-碳纳米管复合材料的研究提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural stability and multiple dynamic behaviors of aluminum nanostructures encapsulated in carbon nanotubes
Carbon nanotubes offer one-dimensional nanoconfinement space for metals, resulting in functional materials with novel physical properties. In this study, we successfully predicted a one-dimensional stable structure of aluminum confined within Carbon nanotubes using the MAGUS confined space search method. According to the phonon spectrum, this configuration is mechanically stable at ambient pressure and temperature. However, when the temperature reaches 350 K, aluminum atoms exhibit rotational and translational collective motions, eventually escaping from the open-boundary nanotube. By calculating the diffusion energy barrier of the aluminum, we elucidated the mechanism underlying these collective motion patterns. Through band structure calculations, we discovered strong orbital hybridization between aluminum and Carbon nanotubes. Our research reveals the stable form and unique dynamic and electrical properties of aluminum metal in Carbon nanotubes, providing new insights for the study of metal- Carbon nanotube composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信