Physical Review X最新文献

筛选
英文 中文
Absence of E2g Nematic Instability and Dominant A1g Response in the Kagome Metal CsV3Sb5 卡戈米金属 CsV3Sb5 中不存在 E2g 向列不稳定性和占主导地位的 A1g 响应
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-29 DOI: 10.1103/physrevx.14.031015
Zhaoyu Liu, Yue Shi, Qianni Jiang, Elliott W. Rosenberg, Jonathan M. DeStefano, Jinjin Liu, Chaowei Hu, Yuzhou Zhao, Zhiwei Wang, Yugui Yao, David Graf, Pengcheng Dai, Jihui Yang, Xiaodong Xu, Jiun-Haw Chu
{"title":"Absence of E2g Nematic Instability and Dominant A1g Response in the Kagome Metal CsV3Sb5","authors":"Zhaoyu Liu, Yue Shi, Qianni Jiang, Elliott W. Rosenberg, Jonathan M. DeStefano, Jinjin Liu, Chaowei Hu, Yuzhou Zhao, Zhiwei Wang, Yugui Yao, David Graf, Pengcheng Dai, Jihui Yang, Xiaodong Xu, Jiun-Haw Chu","doi":"10.1103/physrevx.14.031015","DOIUrl":"https://doi.org/10.1103/physrevx.14.031015","url":null,"abstract":"Ever since the discovery of the charge density wave (CDW) transition in the kagome metal <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CsV</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msub><mrow><mi>Sb</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math>, the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math>), an additional electronic nematic instability well below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math> has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>m</mi><msub><mi>E</mi><mrow><mn>2</mn><mi>g</mi></mrow></msub></msub></math>). Verifying the existence of a nematic transition below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math> is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CsV</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msub><mrow><mi>Sb</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math> using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>m</mi><msub><mi>E</mi><mrow><mn>2</mn><mi>g</mi></mrow></msub></msub></math> is temperature independent, except for a step jump at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math>. The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>m</mi><msub><mi>A</mi><mrow><mn>1</mn><mi>g</mi></mrow></msub></msub></math> increases below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math>, reaching a peak value of 90 at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>*</mo></msup><mo>=</mo><mn>20</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">K</mi></math>. Our results strongly indicate that the phase transition at <math display=\"inline\" xmlns=\"http://","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"48 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Quantum Chaos through Microcanonical Distributions of Entanglement 通过微观纠缠分布量化量子混沌
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-24 DOI: 10.1103/physrevx.14.031014
Joaquin F. Rodriguez-Nieva, Cheryne Jonay, Vedika Khemani
{"title":"Quantifying Quantum Chaos through Microcanonical Distributions of Entanglement","authors":"Joaquin F. Rodriguez-Nieva, Cheryne Jonay, Vedika Khemani","doi":"10.1103/physrevx.14.031014","DOIUrl":"https://doi.org/10.1103/physrevx.14.031014","url":null,"abstract":"A characteristic feature of “quantum chaotic” systems is that their eigenspectra and eigenstates display universal statistical properties described by random matrix theory (RMT). However, eigenstates of local systems also encode structure beyond RMT. To capture this feature, we introduce a framework that allows us to compare the <i>ensemble</i> properties of eigenstates in local systems with those of pure random states. In particular, our framework defines a notion of distance between quantum state ensembles that utilizes the Kullback-Leibler divergence to compare the microcanonical distribution of entanglement entropy (EE) of eigenstates with a reference RMT distribution generated by pure random states (with appropriate constraints). This notion gives rise to a quantitative metric for quantum chaos that not only accounts for averages of the distributions but also higher moments. The differences in moments are compared on a highly resolved scale set by the standard deviation of the RMT distribution, which is exponentially small in system size. As a result, the metric can distinguish between chaotic and integrable behaviors and, in addition, quantify and compare the <i>degree</i> of chaos (in terms of proximity to RMT behavior) between two systems that are assumed to be chaotic. We implement our framework in local, minimally structured, Floquet random circuits, as well as a canonical family of many-body Hamiltonians, the mixed-field Ising model (MFIM). Importantly, for Hamiltonian systems, we find that the reference random distribution must be appropriately constrained to incorporate the effect of energy conservation in order to describe the ensemble properties of midspectrum eigenstates. The metric captures deviations from RMT across all models and parameters, including those that have been previously identified as strongly chaotic, and for which other diagnostics of chaos such as level spacing statistics look strongly thermal. In Floquet circuits, the dominant source of deviations is the second moment of the distribution, and this persists for all system sizes. For the MFIM, we find significant variation of the KL divergence in parameter space. Notably, we find a small region where deviations from RMT are minimized, suggesting that “maximally chaotic” Hamiltonians may exist in fine-tuned pockets of parameter space.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"28 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Approach Reveals the Symmetry-Breaking Pathway to the Broken Helix in EuIn2As2 多模态方法揭示 EuIn2As2 中断裂螺旋的对称性破坏途径
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-22 DOI: 10.1103/physrevx.14.031013
E. Donoway, T. V. Trevisan, A. Liebman-Peláez, R. P. Day, K. Yamakawa, Y. Sun, J. R. Soh, D. Prabhakaran, A. T. Boothroyd, R. M. Fernandes, J. G. Analytis, J. E. Moore, J. Orenstein, V. Sunko
{"title":"Multimodal Approach Reveals the Symmetry-Breaking Pathway to the Broken Helix in EuIn2As2","authors":"E. Donoway, T. V. Trevisan, A. Liebman-Peláez, R. P. Day, K. Yamakawa, Y. Sun, J. R. Soh, D. Prabhakaran, A. T. Boothroyd, R. M. Fernandes, J. G. Analytis, J. E. Moore, J. Orenstein, V. Sunko","doi":"10.1103/physrevx.14.031013","DOIUrl":"https://doi.org/10.1103/physrevx.14.031013","url":null,"abstract":"Understanding and manipulating emergent phases, which are themes at the forefront of quantum-materials research, rely on identifying their underlying symmetries. This general principle has been particularly prominent in materials with coupled electronic and magnetic degrees of freedom, in which magnetic order influences the electronic band structure and can lead to exotic topological effects. However, identifying symmetry of a magnetically ordered phase can pose a challenge, particularly in the presence of small domains. Here we introduce a multimodal approach for determining magnetic structures, which combines symmetry-sensitive optical probes, scattering, and group-theoretical analysis. We apply it to &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;EuIn&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;As&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;, a material that has received attention as a candidate axion insulator. While first-principles calculations predict this state on the assumption of a simple collinear antiferromagnetic structure, subsequent neutron-scattering measurements reveal a much more intricate magnetic ground state characterized by two coexisting magnetic wave vectors reached by successive thermal phase transitions. The proposed high- and low-temperature phases are a spin helix and a state with interpenetrating helical and Néel antiferromagnetic order termed a “broken helix,” respectively. Employing a multimodal approach, we identify the magnetic structure associated with these two phases of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;EuIn&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;As&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;. We find that the higher-temperature phase is characterized by a variation of the magnetic moment amplitude from layer to layer, with the moment vanishing entirely in every third Eu layer. The lower-temperature structure is similar to the broken helix, with one important difference: Because of local strain, the relative orientation of the magnetic structure and the lattice is not fixed. Consequently, the symmetry required to protect the axion phase is not generically protected in &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;EuIn&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;As&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;, but we show that it can be restored if the magnetic structure is tuned with uniaxial strain. Finally, we present a spin Hamiltonian that identifies the spin interactions that account for the complex magnetic order in &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;EuIn&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;As&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;. Our work highlights t","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"79 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical Facilitation Governs the Equilibration Dynamics of Glasses 玻璃平衡动力学的动态促进作用
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-19 DOI: 10.1103/physrevx.14.031012
Rahul N. Chacko, François P. Landes, Giulio Biroli, Olivier Dauchot, Andrea J. Liu, David R. Reichman
{"title":"Dynamical Facilitation Governs the Equilibration Dynamics of Glasses","authors":"Rahul N. Chacko, François P. Landes, Giulio Biroli, Olivier Dauchot, Andrea J. Liu, David R. Reichman","doi":"10.1103/physrevx.14.031012","DOIUrl":"https://doi.org/10.1103/physrevx.14.031012","url":null,"abstract":"Convincing evidence of domain growth in the heating of ultrastable glasses suggests that the equilibration dynamics of supercooled liquids could be driven by a nucleation and growth mechanism. We investigate this possibility by simulating the equilibration dynamics of a model glass during both heating and cooling between poorly and well-annealed states. Though we do observe the growth of domains during heating, we find that domains are absent during cooling. This absence is inconsistent with classical nucleation theory. By comparing the equilibration dynamics of our glass with that of two models with kinetic constraints, we demonstrate that dynamical facilitation generically leads to heating driven by domain growth and cooling without domains. Our results provide strong evidence that dynamical facilitation, not nucleation and interfacial-tension-driven domain growth, is the driving mechanism for the equilibration dynamics of glass formers.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"31 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Heteropolymer Interactions: Demixing and Hypermixing of Disordered Protein Sequences 预测杂聚物相互作用:无序蛋白质序列的去混合与超混合
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-18 DOI: 10.1103/physrevx.14.031011
Kyosuke Adachi, Kyogo Kawaguchi
{"title":"Predicting Heteropolymer Interactions: Demixing and Hypermixing of Disordered Protein Sequences","authors":"Kyosuke Adachi, Kyogo Kawaguchi","doi":"10.1103/physrevx.14.031011","DOIUrl":"https://doi.org/10.1103/physrevx.14.031011","url":null,"abstract":"Cells contain multiple condensates which spontaneously form due to the heterotypic interactions between their components. Although the proteins and disordered region sequences that are responsible for condensate formation have been extensively studied, the rule of interactions between the components that allow demixing, i.e., the coexistence of multiple condensates, is yet to be elucidated. Here, we construct an effective theory of the interaction between heteropolymers by fitting it to the molecular dynamics simulation results obtained for more than 200 sequences sampled from the disordered regions of human proteins. We find that the sum of amino acid pair interactions across two heteropolymers predicts the Boyle temperature qualitatively well, which can be quantitatively improved by the dimer pair approximation, where we incorporate the effect of neighboring amino acids in the sequences. The improved theory, combined with the finding of a metric that captures the effective interaction strength between distinct sequences, allowed the selection of up to three disordered region sequences that demix with each other in multicomponent simulations, as well as the generation of artificial sequences that demix with a given sequence. The theory points to a generic sequence design strategy to demix or hypermix thanks to the low-dimensional nature of the space of the interactions that we identify. As a consequence of the geometric arguments in the space of interactions, we find that the number of distinct sequences that can demix with each other is strongly constrained, irrespective of the choice of the coarse-grained model. Altogether, we construct a theoretical basis for methods to estimate the effective interaction between heteropolymers, which can be utilized in predicting phase separation properties as well as rules of assignment in the localization and functions of disordered proteins.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"78 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovering Complete Positivity of Non-Markovian Quantum Dynamics with Choi-Proximity Regularization 用 Choi-Proximity 正则化恢复非马尔可夫量子动力学的完全正向性
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-17 DOI: 10.1103/physrevx.14.031010
Antonio D’Abbruzzo, Donato Farina, Vittorio Giovannetti
{"title":"Recovering Complete Positivity of Non-Markovian Quantum Dynamics with Choi-Proximity Regularization","authors":"Antonio D’Abbruzzo, Donato Farina, Vittorio Giovannetti","doi":"10.1103/physrevx.14.031010","DOIUrl":"https://doi.org/10.1103/physrevx.14.031010","url":null,"abstract":"A relevant problem in the theory of open quantum systems is the lack of complete positivity of dynamical maps obtained after weak-coupling approximations, a famous example being the Redfield master equation. A number of approaches exist to recover well-defined evolutions under additional Markovian assumptions, but much less is known beyond this regime. Here, we propose a numerical method to cure the complete-positivity violation issue while preserving the non-Markovian features of an arbitrary original dynamical map. The idea is to replace its unphysical Choi operator with its closest physical one, mimicking recent work on quantum process tomography. We also show that the regularized dynamics is more accurate in terms of reproducing the exact dynamics, which allows us to heuristically push the utilization of these master equations in moderate coupling regimes, where the loss of positivity can have a relevant impact.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"63 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Predictor for the Onset of Critical Transitions in Networked Dynamical Systems 网络动力系统临界转换开始的早期预测器
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-15 DOI: 10.1103/physrevx.14.031009
Zijia Liu, Xiaozhu Zhang, Xiaolei Ru, Ting-Ting Gao, Jack Murdoch Moore, Gang Yan
{"title":"Early Predictor for the Onset of Critical Transitions in Networked Dynamical Systems","authors":"Zijia Liu, Xiaozhu Zhang, Xiaolei Ru, Ting-Ting Gao, Jack Murdoch Moore, Gang Yan","doi":"10.1103/physrevx.14.031009","DOIUrl":"https://doi.org/10.1103/physrevx.14.031009","url":null,"abstract":"Numerous natural and human-made systems exhibit critical transitions whereby slow changes in environmental conditions spark abrupt shifts to a qualitatively distinct state. These shifts very often entail severe consequences; therefore, it is imperative to devise robust and informative approaches for anticipating the onset of critical transitions. Real-world complex systems can comprise hundreds or thousands of interacting entities, and implementing prevention or management strategies for critical transitions requires knowledge of the exact condition in which they will manifest. However, most research so far has focused on low-dimensional systems and small networks containing fewer than ten nodes or has not provided an estimate of the location where the transition will occur. We address these weaknesses by developing a deep-learning framework which can predict the specific location where critical transitions happen in networked systems with size up to hundreds of nodes. These predictions do not rely on the network topology, the edge weights, or the knowledge of system dynamics. We validate the effectiveness of our machine-learning-based framework by considering a diverse selection of systems representing both smooth (second-order) and explosive (first-order) transitions: the synchronization transition in coupled Kuramoto oscillators; the sharp decline in the resource biomass present in an ecosystem; and the abrupt collapse of a Wilson-Cowan neuronal system. We show that our method provides accurate predictions for the onset of critical transitions well in advance of their occurrences, is robust to noise and transient data, and relies only on observations of a small fraction of nodes. Finally, we demonstrate the applicability of our approach to real-world systems by considering empirical vegetated ecosystems in Africa.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"62 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature of Excitons and Their Ligand-Mediated Delocalization in Nickel Dihalide Charge-Transfer Insulators 二卤化镍电荷转移绝缘体中激子的性质及其配位体介导的脱ocalization
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-12 DOI: 10.1103/physrevx.14.031007
Connor A. Occhialini, Yi Tseng, Hebatalla Elnaggar, Qian Song, Mark Blei, Seth Ariel Tongay, Valentina Bisogni, Frank M. F. de Groot, Jonathan Pelliciari, Riccardo Comin
{"title":"Nature of Excitons and Their Ligand-Mediated Delocalization in Nickel Dihalide Charge-Transfer Insulators","authors":"Connor A. Occhialini, Yi Tseng, Hebatalla Elnaggar, Qian Song, Mark Blei, Seth Ariel Tongay, Valentina Bisogni, Frank M. F. de Groot, Jonathan Pelliciari, Riccardo Comin","doi":"10.1103/physrevx.14.031007","DOIUrl":"https://doi.org/10.1103/physrevx.14.031007","url":null,"abstract":"The fundamental optical excitations of correlated transition-metal compounds are typically identified with multielectronic transitions localized at the transition-metal site, such as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mi>d</mi></math> transitions. In this vein, intense interest has surrounded the appearance of sharp, below-band-gap optical transitions, i.e., excitons, within the magnetic phase of correlated <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>Ni</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> van der Waals magnets. The interplay of magnetic and charge-transfer insulating ground states in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>Ni</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> systems raises intriguing questions on the roles of long-range magnetic order and of metal-ligand charge transfer in the exciton nature, which inspired microscopic descriptions beyond typical <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mi>d</mi></math> excitations. Here we study the impact of charge transfer and magnetic order on the excitation spectrum of the nickel dihalides (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ni</mi><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>X</mi><mo>=</mo><mi>Cl</mi></mrow></math>, Br, and I) using Ni-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>L</mi><mn>3</mn></msub></math> edge resonant inelastic x-ray scattering (RIXS). In all compounds, we detect sharp excitations, analogous to the recently reported excitons, and assign them to spin-singlet multiplets of octahedrally coordinated <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>Ni</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> stabilized by intra-atomic Hund’s exchange. Additionally, we demonstrate that these excitons are dispersive using momentum-resolved RIXS. Our data evidence a ligand-mediated multiplet dispersion, which is tuned by the charge-transfer gap and independent of the presence of long-range magnetic order. This reveals the mechanisms governing nonlocal interactions of on-site <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mi>d</mi></math> excitations with the surrounding crystal or magnetic structure, in analogy to ground-state superexchange. These measurements thus establish the roles of magnetic order, self-doped ligand holes, and intersite-coupling mechanisms for the properties of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mi>d</mi></math> excitations in charge-transfer insulators.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flocking by Turning Away 转过身去
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-12 DOI: 10.1103/physrevx.14.031008
Suchismita Das, Matteo Ciarchi, Ziqi Zhou, Jing Yan, Jie Zhang, Ricard Alert
{"title":"Flocking by Turning Away","authors":"Suchismita Das, Matteo Ciarchi, Ziqi Zhou, Jing Yan, Jie Zhang, Ricard Alert","doi":"10.1103/physrevx.14.031008","DOIUrl":"https://doi.org/10.1103/physrevx.14.031008","url":null,"abstract":"Flocking, as paradigmatically exemplified by birds, is the coherent collective motion of active agents. As originally conceived, flocking emerges through alignment interactions between the agents. Here, we report that flocking can also emerge through interactions that turn agents away from each other. Combining simulations, kinetic theory, and experiments, we demonstrate this mechanism of flocking in self-propelled Janus colloids with stronger repulsion on the front than on the rear. The polar state is stable because particles achieve a compromise between turning away from left and right neighbors. Unlike for alignment interactions, the emergence of polar order from turn-away interactions requires particle repulsion. At high concentration, repulsion produces flocking Wigner crystals. Whereas repulsion often leads to motility-induced phase separation of active particles, here it combines with turn-away torques to produce flocking. Therefore, our findings bridge the classes of aligning and nonaligning active matter. Our results could help to reconcile the observations that cells can flock despite turning away from each other via contact inhibition of locomotion. Overall, our work shows that flocking is a very robust phenomenon that arises even when the orientational interactions would seem to prevent it.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"1 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Certifying Ground-State Properties of Many-Body Systems 认证多体系统的基态特性
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-07-11 DOI: 10.1103/physrevx.14.031006
Jie Wang, Jacopo Surace, Irénée Frérot, Benoît Legat, Marc-Olivier Renou, Victor Magron, Antonio Acín
{"title":"Certifying Ground-State Properties of Many-Body Systems","authors":"Jie Wang, Jacopo Surace, Irénée Frérot, Benoît Legat, Marc-Olivier Renou, Victor Magron, Antonio Acín","doi":"10.1103/physrevx.14.031006","DOIUrl":"https://doi.org/10.1103/physrevx.14.031006","url":null,"abstract":"A ubiquitous problem in quantum physics is to understand the ground-state properties of many-body systems. Confronted with the fact that exact diagonalization quickly becomes impossible when increasing the system size, variational approaches are typically employed as a scalable alternative: Energy is minimized over a subset of all possible states and then different physical quantities are computed over the solution state. Despite remarkable success, rigorously speaking, all that variational methods offer are upper bounds on the ground-state energy. On the other hand, so-called relaxations of the ground-state problem based on semidefinite programming represent a complementary approach, providing lower bounds to the ground-state energy. However, in their current implementation, neither variational nor relaxation methods offer provable bound on other observables in the ground state beyond the energy. In this work, we show that the combination of the two classes of approaches can be used to derive certifiable bounds on the value of any observable in the ground state, such as correlation functions of arbitrary order, structure factors, or order parameters. We illustrate the power of this approach in paradigmatic examples of 1D and 2D spin-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><mn>2</mn></math> Heisenberg models. To improve the scalability of the method, we exploit the symmetries and sparsity of the considered systems to reach sizes of hundreds of particles at much higher precision than previous works. Our analysis therefore shows how to obtain certifiable bounds on many-body ground-state properties beyond energy in a scalable way.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"54 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信