Physical Review X最新文献

筛选
英文 中文
Surface Magnetization in Antiferromagnets: Classification, Example Materials, and Relation to Magnetoelectric Responses 反铁磁体的表面磁化:分类、示例材料以及与磁电反应的关系
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-28 DOI: 10.1103/physrevx.14.021033
Sophie F. Weber, Andrea Urru, Sayantika Bhowal, Claude Ederer, Nicola A. Spaldin
{"title":"Surface Magnetization in Antiferromagnets: Classification, Example Materials, and Relation to Magnetoelectric Responses","authors":"Sophie F. Weber, Andrea Urru, Sayantika Bhowal, Claude Ederer, Nicola A. Spaldin","doi":"10.1103/physrevx.14.021033","DOIUrl":"https://doi.org/10.1103/physrevx.14.021033","url":null,"abstract":"We use symmetry analysis and density-functional theory to determine and characterize surface terminations that have a finite equilibrium magnetization density in antiferromagnetic materials. A nonzero magnetic dipole moment per unit area or “surface magnetization” can arise on particular surfaces of many antiferromagnets due to the bulk magnetic symmetries. Such surface magnetization underlies intriguing physical phenomena like interfacial magnetic coupling and can be used as a readout method of antiferromagnetic domains. However, a universal description of antiferromagnetic surface magnetization is lacking. We first introduce a classification system based on whether the surface magnetization is either sensitive or robust to roughness and on whether the magnetic dipoles at surface of interest are compensated or uncompensated when the bulk magnetic order is retained at the surface. We show that roughness-sensitive categories can be identified by a simple extension of a previously established group-theory formalism for identifying roughness-robust surface magnetization. We then map the group-theory method of identifying surface magnetization to a novel description in terms of bulk magnetic multipoles, which are already established as symmetry indicators for bulk magnetoelectric responses at both linear and higher orders. We use density-functional calculations to illustrate that nominally compensated surfaces in magnetoelectric <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>Cr</mi></mrow><mn>2</mn></msub><msub><mrow><mi mathvariant=\"normal\">O</mi></mrow><mn>3</mn></msub></mrow></math> and centrosymmetric altermagnetic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>FeF</mi></mrow><mn>2</mn></msub></mrow></math> develop a finite magnetization density at the surface, in agreement with our predictions based on both group theory and the ordering of the bulk multipoles. Our analysis provides a comprehensive basis for understanding the surface magnetic properties and their intimate correspondence to bulk magnetoelectric effects in antiferromagnets and has important implications for technologically relevant phenomena such as exchange-bias coupling.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"44 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal Symmetry of Optimal Control at the Microscale 微尺度优化控制的普遍对称性
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-24 DOI: 10.1103/physrevx.14.021032
Sarah A. M. Loos, Samuel Monter, Felix Ginot, Clemens Bechinger
{"title":"Universal Symmetry of Optimal Control at the Microscale","authors":"Sarah A. M. Loos, Samuel Monter, Felix Ginot, Clemens Bechinger","doi":"10.1103/physrevx.14.021032","DOIUrl":"https://doi.org/10.1103/physrevx.14.021032","url":null,"abstract":"Optimizing the energy efficiency of driving processes provides valuable insights into the underlying physics and is of crucial importance for numerous applications, from biological processes to the design of machines and robots. Knowledge of optimal driving protocols is particularly valuable at the microscale, where energy supply is often limited. Here, we experimentally and theoretically investigate the paradigmatic optimization problem of moving a potential carrying a load through a fluid, in a finite time and over a given distance, in such a way that the required work is minimized. An important step towards more realistic systems is the consideration of memory effects in the surrounding fluid, which are ubiquitous in real-world applications. Therefore, our experiments were performed in viscous and viscoelastic media, which are typical environments for synthetic and biological processes on the microscale. Despite marked differences between the protocols in both fluids, we find that the optimal control protocol and the corresponding average particle trajectory always obey a time-reversal symmetry. We show that this symmetry, which surprisingly applies here to a class of processes far from thermal equilibrium, holds universally for various systems, including active, granular, and long-range correlated media in their linear regimes. The uncovered symmetry provides a rigorous and versatile criterion for optimal control that greatly facilitates the search for energy-efficient transport strategies in a wide range of systems. Using a machine learning algorithm, we demonstrate that the algorithmic exploitation of time-reversal symmetry can significantly enhance the performance of numerical optimization algorithms.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"23 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twist-Induced Hyperbolic Shear Metasurfaces 扭曲诱导的双曲剪切元曲面
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-24 DOI: 10.1103/physrevx.14.021031
Simon Yves, Emanuele Galiffi, Xiang Ni, Enrico M. Renzi, Andrea Alù
{"title":"Twist-Induced Hyperbolic Shear Metasurfaces","authors":"Simon Yves, Emanuele Galiffi, Xiang Ni, Enrico M. Renzi, Andrea Alù","doi":"10.1103/physrevx.14.021031","DOIUrl":"https://doi.org/10.1103/physrevx.14.021031","url":null,"abstract":"Following the discovery of moiré-driven superconductivity and density waves in twisted-graphene multilayers, twistronics has spurred a surge of interest in tailored broken symmetries through angular rotations enabling new properties, from electronics to photonics and phononics. Analogously, in monoclinic polar crystals a nontrivial angle between nondegenerate dipolar phonon resonances can naturally emerge due to asymmetries in their crystal lattice, and its variations are associated with intriguing polaritonic phenomena, including axial dispersion, i.e., the rotation of the optical axis with frequency, and microscopic shear effects that result in an asymmetric distribution of material loss. So far, these phenomena have been restricted to specific midinfrared frequencies difficult to access with conventional laser sources and fundamentally limited by the degree of asymmetry and by the strength of light-matter interactions available in natural crystals. Here, we leverage the twistronics concept to demonstrate maximal axial dispersion and loss redistribution of hyperbolic waves in elastic metasurfaces, achieved by tailoring the angle between coupled metasurface pairs featuring tailored anisotropy. We show extreme control over elastic wave dispersion and absorption via the twist angle and leverage the resulting phenomena to demonstrate enhanced propagation distance, in-plane reflection-free negative refraction and diffraction-free defect detection. Our work welds the concepts of twistronics, non-Hermiticity, and extreme anisotropy, demonstrating the powerful opportunities enabled by metasurfaces for tunable, highly directional surface-acoustic-wave propagation of great interest for a wide range of applications spanning from seismic mitigation to on-chip phononics and wireless communication systems, hence paving the way toward their translation into emerging photonic and polaritonic metasurface technologies.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"18 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Wave Functions for Superfluids 超流体的神经波函数
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-22 DOI: 10.1103/physrevx.14.021030
Wan Tong Lou, Halvard Sutterud, Gino Cassella, W. M. C. Foulkes, Johannes Knolle, David Pfau, James S. Spencer
{"title":"Neural Wave Functions for Superfluids","authors":"Wan Tong Lou, Halvard Sutterud, Gino Cassella, W. M. C. Foulkes, Johannes Knolle, David Pfau, James S. Spencer","doi":"10.1103/physrevx.14.021030","DOIUrl":"https://doi.org/10.1103/physrevx.14.021030","url":null,"abstract":"Understanding superfluidity remains a major goal of condensed matter physics. Here, we tackle this challenge utilizing the recently developed fermionic neural network (FermiNet) wave function <i>Ansatz</i> [D. Pfau <i>et al.</i>, <span>Phys. Rev. Res.</span> <b>2</b>, 033429 (2020).] for variational Monte Carlo calculations. We study the unitary Fermi gas, a system with strong, short-range, two-body interactions known to possess a superfluid ground state but difficult to describe quantitatively. We demonstrate key limitations of the FermiNet <i>Ansatz</i> in studying the unitary Fermi gas and propose a simple modification based on the idea of an antisymmetric geminal power singlet (AGPs) wave function. The new AGPs FermiNet outperforms the original FermiNet significantly in paired systems, giving results which are more accurate than fixed-node diffusion Monte Carlo and are consistent with experiment. We prove mathematically that the new <i>Ansatz</i>, which differs from the original <i>Ansatz</i> only by the method of antisymmetrization, is a strict generalization of the original FermiNet architecture, despite the use of fewer parameters. Our approach shares several advantages with the original FermiNet: The use of a neural network removes the need for an underlying basis set; sand the flexibility of the network yields extremely accurate results within a variational quantum Monte Carlo framework that provides access to unbiased estimates of arbitrary ground-state expectation values. We discuss how the method can be extended to study other superfluid.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave-Function Network Description and Kolmogorov Complexity of Quantum Many-Body Systems 量子多体系统的波函数网络描述和柯尔莫哥洛夫复杂性
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-21 DOI: 10.1103/physrevx.14.021029
T. Mendes-Santos, M. Schmitt, A. Angelone, A. Rodriguez, P. Scholl, H. J. Williams, D. Barredo, T. Lahaye, A. Browaeys, M. Heyl, M. Dalmonte
{"title":"Wave-Function Network Description and Kolmogorov Complexity of Quantum Many-Body Systems","authors":"T. Mendes-Santos, M. Schmitt, A. Angelone, A. Rodriguez, P. Scholl, H. J. Williams, D. Barredo, T. Lahaye, A. Browaeys, M. Heyl, M. Dalmonte","doi":"10.1103/physrevx.14.021029","DOIUrl":"https://doi.org/10.1103/physrevx.14.021029","url":null,"abstract":"Programmable quantum devices are now able to probe wave functions at unprecedented levels. This is based on the ability to project the many-body state of atom and qubit arrays onto a measurement basis which produces snapshots of the system wave function. Extracting and processing information from such observations remains, however, an open quest. One often resorts to analyzing low-order correlation functions—that is, discarding most of the available information content. Here, we introduce wave-function networks—a mathematical framework to describe wave-function snapshots based on network theory. For many-body systems, these networks can become scale-free—a mathematical structure that has found tremendous success and applications in a broad set of fields, ranging from biology to epidemics to Internet science. We demonstrate the potential of applying these techniques to quantum science by introducing protocols to extract the Kolmogorov complexity corresponding to the output of a quantum simulator and implementing tools for fully scalable cross-platform certification based on similarity tests between networks. We demonstrate the emergence of scale-free networks analyzing experimental data obtained with a Rydberg quantum simulator manipulating up to 100 atoms. Our approach illustrates how, upon crossing a phase transition, the simulator complexity decreases while correlation length increases—a direct signature of buildup of universal behavior in data space. Comparing experiments with numerical simulations, we achieve cross-certification at the wave-function level up to timescales of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi mathvariant=\"normal\">s</mi></mrow></math> with a confidence level of 90% and determine experimental calibration intervals with unprecedented accuracy. Our framework is generically applicable to the output of quantum computers and simulators with <i>in situ</i> access to the system wave function and requires probing accuracy and repetition rates accessible to most currently available platforms.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"18 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Coauthor! Coauthor! 社论:共同作者合著者
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-21 DOI: 10.1103/physrevx.14.020001
Randall D. Kamien, Daniel Ucko
{"title":"Editorial: Coauthor! Coauthor!","authors":"Randall D. Kamien, Daniel Ucko","doi":"10.1103/physrevx.14.020001","DOIUrl":"https://doi.org/10.1103/physrevx.14.020001","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/PhysRevX.14.020001</span>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"16 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization 边界驱动双自旋链的精确结果与资源效率型远程纠缠稳定
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-20 DOI: 10.1103/physrevx.14.021028
Andrew Lingenfelter, Mingxing Yao, Andrew Pocklington, Yu-Xin Wang (王语馨), Abdullah Irfan, Wolfgang Pfaff, Aashish A. Clerk
{"title":"Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization","authors":"Andrew Lingenfelter, Mingxing Yao, Andrew Pocklington, Yu-Xin Wang (王语馨), Abdullah Irfan, Wolfgang Pfaff, Aashish A. Clerk","doi":"10.1103/physrevx.14.021028","DOIUrl":"https://doi.org/10.1103/physrevx.14.021028","url":null,"abstract":"We derive an exact solution for the steady state of a setup where two <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi><mi>X</mi></math>-coupled <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>-qubit spin chains (with possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi><mi>X</mi></math> spin chain that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jamming Memory into Acoustically Trained Dense Suspensions under Shear 在剪切力作用下将记忆植入声学训练致密悬架
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-14 DOI: 10.1103/physrevx.14.021027
Edward Y. X. Ong, Anna R. Barth, Navneet Singh, Meera Ramaswamy, Abhishek Shetty, Bulbul Chakraborty, James P. Sethna, Itai Cohen
{"title":"Jamming Memory into Acoustically Trained Dense Suspensions under Shear","authors":"Edward Y. X. Ong, Anna R. Barth, Navneet Singh, Meera Ramaswamy, Abhishek Shetty, Bulbul Chakraborty, James P. Sethna, Itai Cohen","doi":"10.1103/physrevx.14.021027","DOIUrl":"https://doi.org/10.1103/physrevx.14.021027","url":null,"abstract":"Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect or “remember” the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit (1) different susceptibility to the same acoustic perturbation, (2) orders of magnitude changes in their instantaneous viscosities upon shear reversal, and (3) even a shear stress that increases in magnitude upon shear cessation. We work through these examples to explain the underlying mechanisms governing each behavior. Then, to illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"228 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge-4e and Charge-6e Flux Quantization and Higher Charge Superconductivity in Kagome Superconductor Ring Devices 卡戈米超导体环形器件中的电荷-4e 和电荷-6e 通量量化与高电荷超导性
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-13 DOI: 10.1103/physrevx.14.021025
Jun Ge, Pinyuan Wang, Ying Xing, Qiangwei Yin, Anqi Wang, Jie Shen, Hechang Lei, Ziqiang Wang, Jian Wang
{"title":"Charge-4e and Charge-6e Flux Quantization and Higher Charge Superconductivity in Kagome Superconductor Ring Devices","authors":"Jun Ge, Pinyuan Wang, Ying Xing, Qiangwei Yin, Anqi Wang, Jie Shen, Hechang Lei, Ziqiang Wang, Jian Wang","doi":"10.1103/physrevx.14.021025","DOIUrl":"https://doi.org/10.1103/physrevx.14.021025","url":null,"abstract":"The flux quantization is a key indication of electron pairing in superconductors. For example, the well-known <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>2</mn><mi>e</mi></mrow></math> flux quantization is considered strong evidence for the existence of charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>e</mi></mrow></math>, two-electron Cooper pairs. Here we report evidence for multicharge flux quantization in mesoscopic ring devices fabricated using the transition-metal kagome superconductor <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CsV</mi></mrow><mn>3</mn></msub><msub><mrow><mi>Sb</mi></mrow><mn>5</mn></msub></mrow></math>. We perform systematic magnetotransport measurements and observe unprecedented quantization of magnetic flux in units of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>4</mn><mi>e</mi></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>6</mn><mi>e</mi></mrow></math> in magnetoresistance oscillations. Specifically, at low temperatures, magnetoresistance oscillations with period <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>2</mn><mi>e</mi></mrow></math> are detected, as expected from the flux quantization for charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>e</mi></mrow></math> superconductivity. We find that the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>2</mn><mi>e</mi></mrow></math> oscillations are suppressed and replaced by resistance oscillations with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>4</mn><mi>e</mi></mrow></math> periodicity when the temperature is increased. Increasing the temperature further suppresses the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>4</mn><mi>e</mi></mrow></math> oscillations, and robust resistance oscillations with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>6</mn><mi>e</mi></mrow></math> periodicity emerge as evidence for charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><mi>e</mi></mrow></math> flux quantization. Our observations provide the first experimental evidence for the existence of multicharge flux quanta and emergent quantum matter exhibiting higher-charge superconductivity in the strongly fluctuating region above the charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>e</mi></mrow></math> Cooper pair condensate, revealing new insights into the intertwined and vestigial electronic order in kagome superconductors.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"15 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics of Computations with Absolute Irreversibility, Unidirectional Transitions, and Stochastic Computation Times 具有绝对不可逆、单向转换和随机计算时间的计算热力学
IF 12.5 1区 物理与天体物理
Physical Review X Pub Date : 2024-05-13 DOI: 10.1103/physrevx.14.021026
Gonzalo Manzano, Gülce Kardeş, Édgar Roldán, David H. Wolpert
{"title":"Thermodynamics of Computations with Absolute Irreversibility, Unidirectional Transitions, and Stochastic Computation Times","authors":"Gonzalo Manzano, Gülce Kardeş, Édgar Roldán, David H. Wolpert","doi":"10.1103/physrevx.14.021026","DOIUrl":"https://doi.org/10.1103/physrevx.14.021026","url":null,"abstract":"Developing a thermodynamic theory of computation is a challenging task at the interface of nonequilibrium thermodynamics and computer science. In particular, this task requires dealing with difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and restricted initial conditions, features common in real-world computers. Here, we present a framework which tackles all such difficulties by extending the martingale theory of nonequilibrium thermodynamics to generic nonstationary Markovian processes, including those with broken detailed balance and/or absolute irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any periodic process—in particular, the periodic processes underlying all current digital computation. Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many computational machines. We illustrate our results with exhaustive numerical simulations of deterministic finite automata processing bit strings, one of the fundamental models of computation from theoretical computer science. We also provide universal equalities and inequalities for the acceptance probability of words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and outline connections between computer science and stochastic resetting. Our results, while motivated from the computational context, are applicable far more broadly.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"27 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信