有效双轴对称手性向列系统的拓扑刚性和非阿贝尔缺陷结

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jin-Sheng Wu, Roberto Abril Valenzuela, Mark J. Bowick, Ivan I. Smalyukh
{"title":"有效双轴对称手性向列系统的拓扑刚性和非阿贝尔缺陷结","authors":"Jin-Sheng Wu, Roberto Abril Valenzuela, Mark J. Bowick, Ivan I. Smalyukh","doi":"10.1103/physrevx.15.021036","DOIUrl":null,"url":null,"abstract":"We study topologically stable defect structures in systems where the defect line classification in three dimensions and associated algebra of interactions (the fundamental group) are governed by the non-Abelian eight-element group, the quaternions Q</a:mi>8</a:mn></a:msub></a:math>. The non-Abelian character of the defect algebra leads to a topological rigidity of bound defect pairs, and trivalent junctions which are the building blocks of multijunction trivalent networks. We realize such structures in laboratory chiral nematics and analyze their behavior analytically, along with numerical modeling. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"3 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Rigidity and Non-Abelian Defect Junctions in Chiral Nematic Systems with Effective Biaxial Symmetry\",\"authors\":\"Jin-Sheng Wu, Roberto Abril Valenzuela, Mark J. Bowick, Ivan I. Smalyukh\",\"doi\":\"10.1103/physrevx.15.021036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study topologically stable defect structures in systems where the defect line classification in three dimensions and associated algebra of interactions (the fundamental group) are governed by the non-Abelian eight-element group, the quaternions Q</a:mi>8</a:mn></a:msub></a:math>. The non-Abelian character of the defect algebra leads to a topological rigidity of bound defect pairs, and trivalent junctions which are the building blocks of multijunction trivalent networks. We realize such structures in laboratory chiral nematics and analyze their behavior analytically, along with numerical modeling. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021036\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021036","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维缺陷线分类和相关的相互作用代数(基本群)由非阿贝尔八元群四元数Q8控制的系统拓扑稳定缺陷结构。缺陷代数的非阿贝尔特性导致束缚缺陷对具有拓扑刚性,三价结是多结三价网络的基本组成部分。我们在实验室的手性向列中实现了这种结构,并分析了它们的行为,同时进行了数值模拟。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Rigidity and Non-Abelian Defect Junctions in Chiral Nematic Systems with Effective Biaxial Symmetry
We study topologically stable defect structures in systems where the defect line classification in three dimensions and associated algebra of interactions (the fundamental group) are governed by the non-Abelian eight-element group, the quaternions Q8. The non-Abelian character of the defect algebra leads to a topological rigidity of bound defect pairs, and trivalent junctions which are the building blocks of multijunction trivalent networks. We realize such structures in laboratory chiral nematics and analyze their behavior analytically, along with numerical modeling. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信