铁电铪离子中矫顽力场的理论下限

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jiyuan Yang, Jing Wu, Jingxuan Li, Chao Zhou, Yang Sun, Zuhuang Chen, Shi Liu
{"title":"铁电铪离子中矫顽力场的理论下限","authors":"Jiyuan Yang, Jing Wu, Jingxuan Li, Chao Zhou, Yang Sun, Zuhuang Chen, Shi Liu","doi":"10.1103/physrevx.15.021042","DOIUrl":null,"url":null,"abstract":"The high coercive field (E</a:mi>c</a:mi></a:msub></a:math>) of hafnia-based ferroelectrics presents a major obstacle to their applications. The ferroelectric switching mechanisms in hafnia that dictate <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:msub><d:mi mathvariant=\"script\">E</d:mi><d:mi>c</d:mi></d:msub></d:math>, especially those related to domain nucleation in the nucleation-limited-switching (NLS) model and domain-wall motion in the Kolmogorov-Avrami-Ishibashi (KAI) model, have remained elusive. We develop a deep-learning-assisted multiscale approach, incorporating atomistic insights into the critical nucleus, to predict both NLS- and KAI-type coercive fields. The theoretical NLS-type <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi mathvariant=\"script\">E</g:mi><g:mi>c</g:mi></g:msub></g:math> values agree with previous experimental results as well as our own measurements and also exhibit the correct thickness scaling for films between 3 and 20 nm. Combined theoretical and experimental investigations reveal that the giant <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msub><j:mi mathvariant=\"script\">E</j:mi><j:mi>c</j:mi></j:msub></j:math> in hafnia-based ferroelectrics arises from the ultrathin geometry, which confines switching to the NLS mechanism. We predict that the theoretical lower limit for KAI-type <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi mathvariant=\"script\">E</m:mi><m:mi>c</m:mi></m:msub></m:math> is <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:mn>0.1</p:mn><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>MV</p:mi><p:mo>/</p:mo><p:mi>cm</p:mi></p:mrow></p:math> arising from mobile domain walls. The activation of KAI-type switching to achieve lower <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:msub><r:mi mathvariant=\"script\">E</r:mi><r:mi>c</r:mi></r:msub></r:math> is supported by our experimental demonstration of a low coercive field of <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mn>1</u:mn><u:mtext> </u:mtext><u:mtext> </u:mtext><u:mi>MV</u:mi><u:mo>/</u:mo><u:mi>cm</u:mi></u:mrow></u:math> in 60 nm ferroelectric <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mo stretchy=\"false\">(</w:mo><w:mrow><w:msub><w:mrow><w:mi>HfO</w:mi></w:mrow><w:mrow><w:mn>2</w:mn></w:mrow></w:msub></w:mrow><w:msub><w:mrow><w:mo stretchy=\"false\">)</w:mo></w:mrow><w:mrow><w:mi>n</w:mi></w:mrow></w:msub><w:mo>/</w:mo><w:mo stretchy=\"false\">(</w:mo><w:mrow><w:msub><w:mrow><w:mi>ZrO</w:mi></w:mrow><w:mrow><w:mn>2</w:mn></w:mrow></w:msub></w:mrow><w:msub><w:mrow><w:mo stretchy=\"false\">)</w:mo></w:mrow><w:mrow><w:mi>n</w:mi></w:mrow></w:msub></w:mrow></w:math> (<cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>n</cb:mi><cb:mo>=</cb:mo><cb:mn>3</cb:mn></cb:math> unit cells) superlattices. These findings establish a comprehensive framework for understanding ferroelectric switching in hafnia and highlight the potential of geometry and domain-wall engineering to achieve low-<eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:msub><eb:mi mathvariant=\"script\">E</eb:mi><eb:mi>c</eb:mi></eb:msub></eb:math> devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"25 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Lower Limit of Coercive Field in Ferroelectric Hafnia\",\"authors\":\"Jiyuan Yang, Jing Wu, Jingxuan Li, Chao Zhou, Yang Sun, Zuhuang Chen, Shi Liu\",\"doi\":\"10.1103/physrevx.15.021042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high coercive field (E</a:mi>c</a:mi></a:msub></a:math>) of hafnia-based ferroelectrics presents a major obstacle to their applications. The ferroelectric switching mechanisms in hafnia that dictate <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:msub><d:mi mathvariant=\\\"script\\\">E</d:mi><d:mi>c</d:mi></d:msub></d:math>, especially those related to domain nucleation in the nucleation-limited-switching (NLS) model and domain-wall motion in the Kolmogorov-Avrami-Ishibashi (KAI) model, have remained elusive. We develop a deep-learning-assisted multiscale approach, incorporating atomistic insights into the critical nucleus, to predict both NLS- and KAI-type coercive fields. The theoretical NLS-type <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msub><g:mi mathvariant=\\\"script\\\">E</g:mi><g:mi>c</g:mi></g:msub></g:math> values agree with previous experimental results as well as our own measurements and also exhibit the correct thickness scaling for films between 3 and 20 nm. Combined theoretical and experimental investigations reveal that the giant <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:msub><j:mi mathvariant=\\\"script\\\">E</j:mi><j:mi>c</j:mi></j:msub></j:math> in hafnia-based ferroelectrics arises from the ultrathin geometry, which confines switching to the NLS mechanism. We predict that the theoretical lower limit for KAI-type <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi mathvariant=\\\"script\\\">E</m:mi><m:mi>c</m:mi></m:msub></m:math> is <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mrow><p:mn>0.1</p:mn><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>MV</p:mi><p:mo>/</p:mo><p:mi>cm</p:mi></p:mrow></p:math> arising from mobile domain walls. The activation of KAI-type switching to achieve lower <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:msub><r:mi mathvariant=\\\"script\\\">E</r:mi><r:mi>c</r:mi></r:msub></r:math> is supported by our experimental demonstration of a low coercive field of <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mrow><u:mn>1</u:mn><u:mtext> </u:mtext><u:mtext> </u:mtext><u:mi>MV</u:mi><u:mo>/</u:mo><u:mi>cm</u:mi></u:mrow></u:math> in 60 nm ferroelectric <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mrow><w:mo stretchy=\\\"false\\\">(</w:mo><w:mrow><w:msub><w:mrow><w:mi>HfO</w:mi></w:mrow><w:mrow><w:mn>2</w:mn></w:mrow></w:msub></w:mrow><w:msub><w:mrow><w:mo stretchy=\\\"false\\\">)</w:mo></w:mrow><w:mrow><w:mi>n</w:mi></w:mrow></w:msub><w:mo>/</w:mo><w:mo stretchy=\\\"false\\\">(</w:mo><w:mrow><w:msub><w:mrow><w:mi>ZrO</w:mi></w:mrow><w:mrow><w:mn>2</w:mn></w:mrow></w:msub></w:mrow><w:msub><w:mrow><w:mo stretchy=\\\"false\\\">)</w:mo></w:mrow><w:mrow><w:mi>n</w:mi></w:mrow></w:msub></w:mrow></w:math> (<cb:math xmlns:cb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cb:mi>n</cb:mi><cb:mo>=</cb:mo><cb:mn>3</cb:mn></cb:math> unit cells) superlattices. These findings establish a comprehensive framework for understanding ferroelectric switching in hafnia and highlight the potential of geometry and domain-wall engineering to achieve low-<eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:msub><eb:mi mathvariant=\\\"script\\\">E</eb:mi><eb:mi>c</eb:mi></eb:msub></eb:math> devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021042\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021042","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铪基铁电体的高矫顽力场是制约其应用的主要障碍。铪中决定Ec的铁电开关机制,特别是与核限制开关(NLS)模型中的畴成核和Kolmogorov-Avrami-Ishibashi (KAI)模型中的畴壁运动有关的机制,仍然是难以理解的。我们开发了一种深度学习辅助的多尺度方法,将原子洞察力纳入关键核,以预测NLS和kai型强制场。理论的nls型Ec值与先前的实验结果以及我们自己的测量结果一致,并且在3到20 nm之间的薄膜中也显示出正确的厚度缩放。理论和实验相结合的研究表明,在铪基铁电体中,巨大的Ec是由超薄的几何结构引起的,这限制了向NLS机制的转换。我们预测kai型Ec的理论下限为0.1 MV/cm,这是由移动畴壁引起的。我们在60 nm的铁电(HfO2)n/(ZrO2)n (n=3个单位细胞)超晶格中进行了1 MV/cm的低矫顽力场的实验演示,支持了kai型开关的激活以实现更低的Ec。这些发现为理解铪中铁电开关建立了一个全面的框架,并强调了几何和畴壁工程在实现低ec器件方面的潜力。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Lower Limit of Coercive Field in Ferroelectric Hafnia
The high coercive field (Ec) of hafnia-based ferroelectrics presents a major obstacle to their applications. The ferroelectric switching mechanisms in hafnia that dictate Ec, especially those related to domain nucleation in the nucleation-limited-switching (NLS) model and domain-wall motion in the Kolmogorov-Avrami-Ishibashi (KAI) model, have remained elusive. We develop a deep-learning-assisted multiscale approach, incorporating atomistic insights into the critical nucleus, to predict both NLS- and KAI-type coercive fields. The theoretical NLS-type Ec values agree with previous experimental results as well as our own measurements and also exhibit the correct thickness scaling for films between 3 and 20 nm. Combined theoretical and experimental investigations reveal that the giant Ec in hafnia-based ferroelectrics arises from the ultrathin geometry, which confines switching to the NLS mechanism. We predict that the theoretical lower limit for KAI-type Ec is 0.1 MV/cm arising from mobile domain walls. The activation of KAI-type switching to achieve lower Ec is supported by our experimental demonstration of a low coercive field of 1 MV/cm in 60 nm ferroelectric (HfO2)n/(ZrO2)n (n=3 unit cells) superlattices. These findings establish a comprehensive framework for understanding ferroelectric switching in hafnia and highlight the potential of geometry and domain-wall engineering to achieve low-Ec devices. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信