Coherent Phonons and Quasiparticle Renormalization in Semimetals from First Principles

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Christoph Emeis, Stephan Jauernik, Sunil Dahiya, Yiming Pan, Carl E. Jensen, Petra Hein, Michael Bauer, Fabio Caruso
{"title":"Coherent Phonons and Quasiparticle Renormalization in Semimetals from First Principles","authors":"Christoph Emeis, Stephan Jauernik, Sunil Dahiya, Yiming Pan, Carl E. Jensen, Petra Hein, Michael Bauer, Fabio Caruso","doi":"10.1103/physrevx.15.021039","DOIUrl":null,"url":null,"abstract":"Coherent phonons, light-induced coherent lattice vibrations in solids, provide a powerful route to engineer structural and electronic degrees of freedom using light. In this manuscript, we formulate an theory of the displacive excitation of coherent phonons (DECP), the primary mechanism for light-induced structural control in semimetals. Our study—based on the simulations of the ultrafast electron and coherent-phonon dynamics in the presence of electron-phonon interactions—establishes a predictive computational framework for describing the emergence of light-induced structural changes and the ensuing transient band-structure renormalization arising from the DECP mechanism. We validate this framework via a combined theoretical and experimental investigation of coherent phonons in the elemental semimetal antimony. Via a Fourier analysis of time- and angle-resolved photoemission spectroscopy measurements, we retrieve information about transient spectral features and quasiparticle renormalization arising from the coherent A</a:mi>1</a:mn>g</a:mi></a:mrow></a:msub></a:math> phonon as a function of momentum, energy, time, and fluence. The qualitative and quantitative agreement between experiment and theory corroborates the first-principles approach formulated in this study. We further apply this formalism to investigate the coherent-phonon dynamics in the topological Weyl semimetal -<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>WTe</c:mi></c:mrow><c:mn>2</c:mn></c:msub></c:mrow></c:math>. Besides reproducing the entire spectrum of coherent phonons observed in experiments, our simulations clearly indicate that the shear <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>A</e:mi><e:mrow><e:mn>1</e:mn><e:mi>g</e:mi></e:mrow></e:msub></e:math> mode—the mode orchestrating a light-induced phase transition in -<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msub><g:mrow><g:mi>WTe</g:mi></g:mrow><g:mn>2</g:mn></g:msub></g:mrow></g:math>—is strongly driven by the DECP mechanism and, thus, provide a conclusive explanation for the driving mechanism underpinning the phase transition. Besides advancing the fundamental understanding of electron-phonon interactions mediated by coherent phonons, this study opens new opportunities for predictively engineering structural and electronic degrees of freedom in semimetals via the DECP mechanism. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021039","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Coherent phonons, light-induced coherent lattice vibrations in solids, provide a powerful route to engineer structural and electronic degrees of freedom using light. In this manuscript, we formulate an theory of the displacive excitation of coherent phonons (DECP), the primary mechanism for light-induced structural control in semimetals. Our study—based on the simulations of the ultrafast electron and coherent-phonon dynamics in the presence of electron-phonon interactions—establishes a predictive computational framework for describing the emergence of light-induced structural changes and the ensuing transient band-structure renormalization arising from the DECP mechanism. We validate this framework via a combined theoretical and experimental investigation of coherent phonons in the elemental semimetal antimony. Via a Fourier analysis of time- and angle-resolved photoemission spectroscopy measurements, we retrieve information about transient spectral features and quasiparticle renormalization arising from the coherent A1g phonon as a function of momentum, energy, time, and fluence. The qualitative and quantitative agreement between experiment and theory corroborates the first-principles approach formulated in this study. We further apply this formalism to investigate the coherent-phonon dynamics in the topological Weyl semimetal -WTe2. Besides reproducing the entire spectrum of coherent phonons observed in experiments, our simulations clearly indicate that the shear A1g mode—the mode orchestrating a light-induced phase transition in -WTe2—is strongly driven by the DECP mechanism and, thus, provide a conclusive explanation for the driving mechanism underpinning the phase transition. Besides advancing the fundamental understanding of electron-phonon interactions mediated by coherent phonons, this study opens new opportunities for predictively engineering structural and electronic degrees of freedom in semimetals via the DECP mechanism. Published by the American Physical Society 2025
半金属中相干声子和准粒子重整化的第一性原理
相干声子,固体中光诱导的相干晶格振动,为利用光设计结构和电子自由度提供了一条强有力的途径。在本文中,我们提出了相干声子(DECP)的位移激发理论,这是半金属中光诱导结构控制的主要机制。我们的研究基于电子-声子相互作用下的超快电子和相干声子动力学的模拟,建立了一个预测计算框架,用于描述光诱导结构变化的出现和随后由DECP机制引起的瞬态带结构重整化。我们通过对元素半金属锑中相干声子的理论和实验研究来验证这一框架。通过傅里叶分析的时间和角度分辨光发射光谱测量,我们检索信息的瞬态光谱特征和准粒子重整产生的相干A1g声子作为一个函数的动量,能量,时间和影响力。实验和理论之间的定性和定量一致证实了本研究中制定的第一性原理方法。我们进一步应用这种形式来研究拓扑Weyl半金属-WTe2中的相干声子动力学。除了再现实验中观察到的相干声子的整个光谱外,我们的模拟还清楚地表明剪切A1g模式(在- wte2中协调光诱导相变的模式)受到DECP机制的强烈驱动,从而为支撑相变的驱动机制提供了结论性的解释。除了推进对相干声子介导的电子-声子相互作用的基本理解外,本研究还为通过DECP机制预测半金属的结构和电子自由度开辟了新的机会。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信