Jiyuan Yang, Jing Wu, Jingxuan Li, Chao Zhou, Yang Sun, Zuhuang Chen, Shi Liu
{"title":"Theoretical Lower Limit of Coercive Field in Ferroelectric Hafnia","authors":"Jiyuan Yang, Jing Wu, Jingxuan Li, Chao Zhou, Yang Sun, Zuhuang Chen, Shi Liu","doi":"10.1103/physrevx.15.021042","DOIUrl":null,"url":null,"abstract":"The high coercive field (E</a:mi>c</a:mi></a:msub></a:math>) of hafnia-based ferroelectrics presents a major obstacle to their applications. The ferroelectric switching mechanisms in hafnia that dictate <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:msub><d:mi mathvariant=\"script\">E</d:mi><d:mi>c</d:mi></d:msub></d:math>, especially those related to domain nucleation in the nucleation-limited-switching (NLS) model and domain-wall motion in the Kolmogorov-Avrami-Ishibashi (KAI) model, have remained elusive. We develop a deep-learning-assisted multiscale approach, incorporating atomistic insights into the critical nucleus, to predict both NLS- and KAI-type coercive fields. The theoretical NLS-type <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi mathvariant=\"script\">E</g:mi><g:mi>c</g:mi></g:msub></g:math> values agree with previous experimental results as well as our own measurements and also exhibit the correct thickness scaling for films between 3 and 20 nm. Combined theoretical and experimental investigations reveal that the giant <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msub><j:mi mathvariant=\"script\">E</j:mi><j:mi>c</j:mi></j:msub></j:math> in hafnia-based ferroelectrics arises from the ultrathin geometry, which confines switching to the NLS mechanism. We predict that the theoretical lower limit for KAI-type <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi mathvariant=\"script\">E</m:mi><m:mi>c</m:mi></m:msub></m:math> is <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:mn>0.1</p:mn><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>MV</p:mi><p:mo>/</p:mo><p:mi>cm</p:mi></p:mrow></p:math> arising from mobile domain walls. The activation of KAI-type switching to achieve lower <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:msub><r:mi mathvariant=\"script\">E</r:mi><r:mi>c</r:mi></r:msub></r:math> is supported by our experimental demonstration of a low coercive field of <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mn>1</u:mn><u:mtext> </u:mtext><u:mtext> </u:mtext><u:mi>MV</u:mi><u:mo>/</u:mo><u:mi>cm</u:mi></u:mrow></u:math> in 60 nm ferroelectric <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mo stretchy=\"false\">(</w:mo><w:mrow><w:msub><w:mrow><w:mi>HfO</w:mi></w:mrow><w:mrow><w:mn>2</w:mn></w:mrow></w:msub></w:mrow><w:msub><w:mrow><w:mo stretchy=\"false\">)</w:mo></w:mrow><w:mrow><w:mi>n</w:mi></w:mrow></w:msub><w:mo>/</w:mo><w:mo stretchy=\"false\">(</w:mo><w:mrow><w:msub><w:mrow><w:mi>ZrO</w:mi></w:mrow><w:mrow><w:mn>2</w:mn></w:mrow></w:msub></w:mrow><w:msub><w:mrow><w:mo stretchy=\"false\">)</w:mo></w:mrow><w:mrow><w:mi>n</w:mi></w:mrow></w:msub></w:mrow></w:math> (<cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>n</cb:mi><cb:mo>=</cb:mo><cb:mn>3</cb:mn></cb:math> unit cells) superlattices. These findings establish a comprehensive framework for understanding ferroelectric switching in hafnia and highlight the potential of geometry and domain-wall engineering to achieve low-<eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:msub><eb:mi mathvariant=\"script\">E</eb:mi><eb:mi>c</eb:mi></eb:msub></eb:math> devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"25 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021042","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high coercive field (Ec) of hafnia-based ferroelectrics presents a major obstacle to their applications. The ferroelectric switching mechanisms in hafnia that dictate Ec, especially those related to domain nucleation in the nucleation-limited-switching (NLS) model and domain-wall motion in the Kolmogorov-Avrami-Ishibashi (KAI) model, have remained elusive. We develop a deep-learning-assisted multiscale approach, incorporating atomistic insights into the critical nucleus, to predict both NLS- and KAI-type coercive fields. The theoretical NLS-type Ec values agree with previous experimental results as well as our own measurements and also exhibit the correct thickness scaling for films between 3 and 20 nm. Combined theoretical and experimental investigations reveal that the giant Ec in hafnia-based ferroelectrics arises from the ultrathin geometry, which confines switching to the NLS mechanism. We predict that the theoretical lower limit for KAI-type Ec is 0.1MV/cm arising from mobile domain walls. The activation of KAI-type switching to achieve lower Ec is supported by our experimental demonstration of a low coercive field of 1MV/cm in 60 nm ferroelectric (HfO2)n/(ZrO2)n (n=3 unit cells) superlattices. These findings establish a comprehensive framework for understanding ferroelectric switching in hafnia and highlight the potential of geometry and domain-wall engineering to achieve low-Ec devices. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.