Lillian B. Hughes, Simon A. Meynell, Weijie Wu, Shreyas Parthasarathy, Lingjie Chen, Zhiran Zhang, Zilin Wang, Emily J. Davis, Kunal Mukherjee, Norman Y. Yao, Ania C. Bleszynski Jayich
{"title":"Strongly Interacting, Two-Dimensional, Dipolar Spin Ensembles in (111)-Oriented Diamond","authors":"Lillian B. Hughes, Simon A. Meynell, Weijie Wu, Shreyas Parthasarathy, Lingjie Chen, Zhiran Zhang, Zilin Wang, Emily J. Davis, Kunal Mukherjee, Norman Y. Yao, Ania C. Bleszynski Jayich","doi":"10.1103/physrevx.15.021035","DOIUrl":null,"url":null,"abstract":"Systems of spins with strong dipolar interactions and controlled dimensionality enable new explorations in quantum sensing and simulation. In this work, we investigate the creation of strong dipolar interactions in a two-dimensional ensemble of nitrogen-vacancy (NV) centers generated via plasma-enhanced chemical vapor deposition on (111)-oriented diamond substrates. We find that diamond growth on the (111) plane yields high incorporation of spins, both nitrogen and NV centers, where the density of the latter is tunable via the miscut of the diamond substrate. Our process allows us to form dense, preferentially aligned, 2D NV ensembles with volume-normalized ac sensitivity down to η</a:mi></a:mrow>ac</a:mi></a:mrow></a:msub>=</a:mo>810</a:mn></a:mtext></a:mtext>pT</a:mi></a:mtext>μ</a:mi>m</a:mi></a:mrow>3</a:mn>/</a:mo>2</a:mn></a:mrow></a:msup></a:mtext>Hz</a:mi></a:mrow>−</a:mo>1</a:mn>/</a:mo>2</a:mn></a:mrow></a:msup></a:mrow></a:math>. Furthermore, we show that (111) affords maximally positive dipolar interactions among a 2D NV ensemble, which is crucial for leveraging dipolar-driven entanglement schemes and exploring new interacting spin physics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"29 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021035","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Systems of spins with strong dipolar interactions and controlled dimensionality enable new explorations in quantum sensing and simulation. In this work, we investigate the creation of strong dipolar interactions in a two-dimensional ensemble of nitrogen-vacancy (NV) centers generated via plasma-enhanced chemical vapor deposition on (111)-oriented diamond substrates. We find that diamond growth on the (111) plane yields high incorporation of spins, both nitrogen and NV centers, where the density of the latter is tunable via the miscut of the diamond substrate. Our process allows us to form dense, preferentially aligned, 2D NV ensembles with volume-normalized ac sensitivity down to ηac=810pTμm3/2Hz−1/2. Furthermore, we show that (111) affords maximally positive dipolar interactions among a 2D NV ensemble, which is crucial for leveraging dipolar-driven entanglement schemes and exploring new interacting spin physics. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.