PhotonicsPub Date : 2024-07-02DOI: 10.3390/photonics11070630
Scott W. Tyler, M. Silvia, Michael V. Jakuba, Brian M. Durante, Dale P. Winebrenner
{"title":"Impacts of Hydrostatic Pressure on Distributed Temperature-Sensing Optical Fibers for Extreme Ocean and Ice Environments","authors":"Scott W. Tyler, M. Silvia, Michael V. Jakuba, Brian M. Durante, Dale P. Winebrenner","doi":"10.3390/photonics11070630","DOIUrl":"https://doi.org/10.3390/photonics11070630","url":null,"abstract":"Optical fiber is increasingly used for both communication and distributed sensing of temperature and strain in environmental studies. In this work, we demonstrate the viability of unreinforced fiber tethers (bare fiber) for Raman-based distributed temperature sensing in deep ocean and deep ice environments. High-pressure testing of single-mode and multimode optical fiber showed little to no changes in light attenuation over pressures from atmospheric to 600 bars. Most importantly, the differential attenuation between Stokes and anti-Stokes frequencies, critical for the evaluation of distributed temperature sensing, was shown to be insignificantly affected by fluid pressures over the range of pressures tested for single-mode fiber, and only very slightly affected in multimode fiber. For multimode fiber deployments to ocean depths as great as 6000 m, the effect of pressure-dependent differential attenuation was shown to impact the estimated temperatures by only 0.15 °K. These new results indicate that bare fiber tethers, in addition to use for communication, can be used for distributed temperature or strain in fibers subjected to large depth (pressure) in varying environments such as deep oceans, glaciers and potentially the icy moons of Saturn and Jupiter.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141687451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-07-01DOI: 10.3390/photonics11070628
Y. Lai, Lan Chen, Teng-Yao Yang, Tsu-Hsin Wu, Chien-Hung Yeh, Kuan-Ming Cheng, Chun-Yen Lin, Chi-Wai Chow, S. Liaw
{"title":"Broad, Tunable and Stable Single-Frequency Erbium Fiber Compound-Ring Lasers Based on Parallel and Series Structures in L-Band Operation","authors":"Y. Lai, Lan Chen, Teng-Yao Yang, Tsu-Hsin Wu, Chien-Hung Yeh, Kuan-Ming Cheng, Chun-Yen Lin, Chi-Wai Chow, S. Liaw","doi":"10.3390/photonics11070628","DOIUrl":"https://doi.org/10.3390/photonics11070628","url":null,"abstract":"In this demonstration, we present two erbium-doped fiber (EDF) lasers, with series and parallel three sub-ring configurations, respectively, to achieve tunable channel output and stable single longitudinal mode (SLM) operation in the L-band range. Here, the fiber ring cavity contains the L-band EDF as a gain medium. Based on the measured results of the two quad-ring structures of the EDF lasers, tunable output bandwidth for the two lasers can be obtained from 1558.0 to 1618.0 nm simultaneously. All the 3 dB linewidths measured for both fiber lasers are 312.5 Hz over the effective wavelength output range. Furthermore, the related optical signal-to-noise ratio (OSNR), output power, output stabilities of the central wavelength and power, and equal output power range of the two proposed EDF lasers are also examined and discussed.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-07-01DOI: 10.3390/photonics11070627
J. Rosolem, F. Bassan, Marcelo P. de Oliveira, Alexandre B. dos Santos, Leonardo M. Wollinger
{"title":"Demonstration of an In-Flight Entertainment System Using Power-over-Fiber","authors":"J. Rosolem, F. Bassan, Marcelo P. de Oliveira, Alexandre B. dos Santos, Leonardo M. Wollinger","doi":"10.3390/photonics11070627","DOIUrl":"https://doi.org/10.3390/photonics11070627","url":null,"abstract":"The use of optical fibers is increasing in modern aircraft because this helps solve challenges of size, weight, communication, and reliability in new generation aircraft. This study describes a video and power transmission system using optical fibers (PoF) for in-flight entertainment (IFE) system application. We present the benefits and the limitations of this application, and we perform two practical experiments to demonstrate their performance. We used off-the-shelf devices in the experiments, such as one 15-Watt semiconductor laser operating at 808 nm, GaAs photovoltaic converters, optical transmitters and receivers, and video monitors. The power and video signals were transmitted using two 50-m length multimode fibers. In addition, we proposed and tested two types of energy transformation units (ETUs), which are responsible for supplying electrical energy to the IFE video monitor and the optical fiber receiver.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141699931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-07-01DOI: 10.3390/photonics11070629
Hao Yang, Huanran Su, Tao Yang, Guan Wang, Yun Xie, Liuke Yi, Xingang Huang, Zhuang Ma, Yiming Zhong, Xiatao Huang, Bo Liu
{"title":"A Comprehensive Comparison of Simplified Volterra Equalization and Kramers–Kronig Schemes in 200 Gb/s/λ PON Downlink Transmission","authors":"Hao Yang, Huanran Su, Tao Yang, Guan Wang, Yun Xie, Liuke Yi, Xingang Huang, Zhuang Ma, Yiming Zhong, Xiatao Huang, Bo Liu","doi":"10.3390/photonics11070629","DOIUrl":"https://doi.org/10.3390/photonics11070629","url":null,"abstract":"The emerging high-bandwidth services of 6G, such as high-definition video transmission and real-time interaction, have promoted the progress of the fiber optic access network industry, driving its development towards the next-generation PON with higher speed and larger system capacity. In response to the future requirements of 200 Gb/s/λ PON for both 20 km and 30 km downlink transmission scenarios, this paper proposes a Simplified Volterra Equalization (SVLE) scheme based on Nyquist PAM4 single-sideband modulation direct detection (SSBM-DD) scheme. In order to verify its advantages, the IQ-modulated Kramers–Kronig reception (KK) scheme is introduced for comparison. Simulation validation platforms for two schemes are conducted, and the performance comparison of the SVLE and KK schemes is carried out. In both, the impact of the carrier signal power ratio (CSPR) on receiver sensitivity, the influence of input optical power on power budget and receiver sensitivity, and the tolerance of receiver sensitivity to the linewidth of the DFB laser are investigated in the simulation. Finally, a comprehensive comparison of the two schemes is presented in terms of system performance, cost, and DSP complexity. In the 20 km downlink transmission scenario, the SVLE scheme outperforms the KK scheme by 4.9 dB in terms of power budget. The total number of multiplications of the SVLE scheme is 37, while that of the KK scheme is 4358. Therefore, the DSP complexity of the SVLE scheme is much lower than that of the KK scheme. The results of the comparison demonstrate that, in downlink transmission scenarios, the SVLE scheme is more suitable than the KK scheme as it exhibits a higher power budget, lower DSP complexity, and lower cost. Consequently, the proposed SVLE scheme could be a highly promising solution for future ultra-high-speed PON downlink transmission.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141712357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-14DOI: 10.3390/photonics11060562
I. Lukin, Vladimir Lukin
{"title":"Propagation of a Partially Coherent Bessel–Gaussian Beam in a Uniform Medium and Turbulent Atmosphere","authors":"I. Lukin, Vladimir Lukin","doi":"10.3390/photonics11060562","DOIUrl":"https://doi.org/10.3390/photonics11060562","url":null,"abstract":"In this paper, the coherent properties of partially coherent Bessel–Gaussian optical beams propagating through a uniform medium (free space) or a turbulent atmosphere are examined theoretically. The consideration is based on the analytical solution of the equation for the transverse second-order mutual coherence function of the field of partially coherent optical radiation in a turbulent atmosphere. For the partially coherent Bessel–Gaussian beam, the second-order mutual coherence function of the source field is taken as a Gaussian–Schell model. In this approximation, we analyze the behavior of the coherence degree and the integral coherence scale of these beams as a function of the propagation pathlength, propagation conditions, and beam parameters, such as the radius of the Gauss factor of the beam, parameter of the Bessel factor of the beam, topological charge, and correlation width of the source field of partially coherent radiation. It was found that, as a partially coherent vortex Bessel–Gaussian beam propagates through a turbulent atmosphere, there appear not two (as might be expected: one due to atmospheric turbulence and another due to the partial coherence of the source field), but only one ring dislocation of the coherence degree (due to the simultaneous effect of both these factors on the optical radiation). In addition, it is shown that the dislocation of the coherence degree that significantly affects the beam coherence level is formed only for beams, for which the coherence width of the source field is larger than the diameter of the first Fresnel zone.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141342868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-14DOI: 10.3390/photonics11060561
Zhan Tang, Fengwei Liu, Yongqian Wu
{"title":"Generalized-Mode Averaging Technique for Wrapped Phase","authors":"Zhan Tang, Fengwei Liu, Yongqian Wu","doi":"10.3390/photonics11060561","DOIUrl":"https://doi.org/10.3390/photonics11060561","url":null,"abstract":"In this paper, a generalized-mode phase averaging technique is proposed to suppress air turbulence and random noise in optical shop testing. This approach eliminates the need to repeatedly unwrap and thus greatly improves processing efficiency. By removing the random tilt component of the wrapped phase, a set of wrapped phases that are corrupted by random vibrations can be unified into the same mode, some of which obey a circular distribution. Therefore, the circular mean technique can be used for wrapped phase averaging; only one unwrapping process is required for a set of wrapped phases. A criterion based on maximum likelihood estimation is proposed to determine scenarios for the use of this method. The effects of noise and air disturbances on this method are discussed. Finally, the effectiveness of the method is demonstrated by simulations and experiments.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141339349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulated Short-Time Fourier-Transform-Based Nonstationary Signal Decomposition for Dual-Comb Ranging Systems","authors":"Ningning Han, Chao Wang, Zhiyang Wu, Xiaoyu Zhai, Yongzhen Pei, Haonan Shi, Xiaobo Li","doi":"10.3390/photonics11060560","DOIUrl":"https://doi.org/10.3390/photonics11060560","url":null,"abstract":"Analyzing and breaking down nonstationary signals into their primary components is significant in various optical applications. In this work, we design a direct, localized, and mathematically rigorous method for nonstationary signals by employing a modulated short-time Fourier transform (MSTFT) that can be implemented efficiently using fast Fourier transform, subsequently isolating energy-concentrated sets through an approximate threshold process, allowing us to directly retrieve instantaneous frequencies and signal components by determining the maximum frequency within each set. MSTFT provides a new insight into the time-frequency analysis in multicomponent signal separation and can be extended to other time-frequency transforms. Beyond the analysis of the synthetic, we also perform real dual-comb ranging signals under turbid water, and the results show an approximate 1.5 dB improvement in peak signal-to-noise ratio, further demonstrating the effectiveness of our method in challenging conditions.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141340704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-13DOI: 10.3390/photonics11060559
Wenjun Liu, Jitao Li
{"title":"Simulation Study on Tunable Terahertz Bandpass Filter Based on Metal–Silicon–Metal Metasurface","authors":"Wenjun Liu, Jitao Li","doi":"10.3390/photonics11060559","DOIUrl":"https://doi.org/10.3390/photonics11060559","url":null,"abstract":"Metasurface devices have demonstrated powerful electromagnetic wave manipulation capabilities. By adjusting the shape and size parameters of the metasurface microstructure, we can control the resonance between spatial electromagnetic waves and the metasurface, which will trigger wave scattering at a specific frequency. By utilizing these characteristics, we design a metasurface device with a bandpass filtering function and a unit cell of the metasurface consisting of a double-layer pinwheel-shaped metal structure and high resistance silicon substrate (forming metal–silicon–metal configuration). A bandpass filter operating in the terahertz band has been implemented, which achieves a 36 GHz filtering bandwidth when the transmission amplitude decreases by 3 dB and remains effective in a wave incidence angle of 20°. This work uses an equivalent RC resonance circuit to explain the formation of bandpass filtering. In addition, the photosensitive properties of silicon enable the filtering function of the device to have on/off tuned characteristics under light excitation, which enhances the dynamic controllability of the filter. The designed device may have application prospects in 6G space communication.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-13DOI: 10.3390/photonics11060558
Mengmeng Xu, M. Hu, Zerong Li, Jinxiu Wang, Jiaxin Fu, Shaokun Wang, Yingying Ji, Haozhen Li, M. Bi, Xuefang Zhou, Sunqiang Pan, Chong Liu
{"title":"Time–Frequency and Spectrum Analyses of All-Solid-State Self-Mode-Locked Burst Pulse Lasers","authors":"Mengmeng Xu, M. Hu, Zerong Li, Jinxiu Wang, Jiaxin Fu, Shaokun Wang, Yingying Ji, Haozhen Li, M. Bi, Xuefang Zhou, Sunqiang Pan, Chong Liu","doi":"10.3390/photonics11060558","DOIUrl":"https://doi.org/10.3390/photonics11060558","url":null,"abstract":"The theoretical and experimental characteristics of all-solid-state self-mode-locked burst pulse lasers are investigated in this study. The time–frequency and spectrum analyses of the lasers incorporating Fabry–Pérot (F-P) structures are presented, along with the development of the corresponding theoretical model. Self-mode-locked burst pulse lasers are experimentally constructed to reduce intracavity losses using the front and rear end surfaces of the gain media to form F-P structures. When the laser cavity length is 600 mm and the gain media lengths are 5, 6, and 10 mm, each burst pulse produced contains 56, 47, and 28 subpulses, respectively, with the same burst pulse width of 2 ns. The burst pulse train with beam quality M2 = 1.37 and an average output power of 0.23 W is obtained when the gain medium length is 5 mm and the pump power is 4.5 W. The corresponding burst pulse repetition frequency is 0.25 GHz and the subpulse repetition frequency is 13.66 GHz. The time–frequency spectral analyses of the laser signals provide a good representation of laser spectral information that even the currently available highest-resolution spectrometers cannot resolve.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141347973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Imaging Interference of a Vortex-Light-Modulated Gaussian Beam","authors":"Yanghe Liu, Yuanhe Tang, Jian Zhou, Cunxia Li, Ningju Hui, Yishan Zhang, Yanlong Wang","doi":"10.3390/photonics11060557","DOIUrl":"https://doi.org/10.3390/photonics11060557","url":null,"abstract":"Combined with vortex light and airglow, some different physical phenomena are presented in this paper. Based on the ground-based airglow imaging interferometer (GBAII) made by our group, a liquid crystal on silicon (LCoS) device on one arm of a wide-angle Michelson interferometer (MI) of the GBAII is replaced by the reflector mirror to become the GBAII-LCoS system. LCoS generates a vortex phase to convert a Gaussian profile airglow into a vortex light pattern. After the Gaussian profile vortex light equation is obtained by combining the Gaussian profile airglow with the Laguerre–Gauss light, three different physical phenomena are obtained: the simulated Gaussian vortex airglow beam exhibits a hollow phenomenon with the introduction of the vortex phase, and as the topological charge (TC) l increases, the hollow range also increases; after adding the vortex factor, the interference fringe intensity can be ‘broadened’ with the optical path difference (OPD) and TC l increases, which match the field broadening technology for solid wide-angle MI; the ‘Four-point algorithm’ wind measurement for the upper atmosphere based on the vortex airglow is derived, which is different from the usual expressions. Some experimental results are presented: We obtained the influence modes of vortex light interference and a polarization angle from 335° to 245°. We also obtained a series of interference images that verifies the rotation of the vortex light, onto which is loaded a set of superimposed vortex phase images with TC l = 3 into LCoS in turn, and the interference image is rotated under the condition of the polarization angle of 245°. The controlled vortex interference image for different TC and grayscale values are completed.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141349042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}