{"title":"生成完美涡束,完全控制环半径和环宽度","authors":"Xin Tao, Yong Liang, Shirui Zhang, Yueqing Li, Minghao Guo, Peng Li","doi":"10.3390/photonics10121382","DOIUrl":null,"url":null,"abstract":"We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam with the spiral phase plates and the axicons, respectively. Although the method has been used many times by other authors, as far as we know, few people pay attention to the quantitative relationship between the control parameters of the PVB and ring width. The effects of the waist radius of the fundamental Gaussian beam wg, base angle of the axicon γ, and focal length of the lens f on the spot parameters (ring radius ρ, and ring half-width Δ) of PVB are systematically studied. The beam pattern of the generated Bessel–Gaussian beam for different propagation distances behind the axicon and the fundamental Gaussian beam wg is presented. We showed experimentally that the ring radius ρ increases linearly with the increase of the base angle γ and focal length f, while the ring half-width Δ decreases with the increase of the fundamental beam waist radius wg, and increases with enlarging the focal length f. We confirmed the topological charge (TC) of the PVB by the interferogram between the PVB and the reference fundamental Gaussian beam. We also studied experimentally that the size of the generated PVB in the Fourier plane is independent of the TCs. Our approach to generate the PVB has the advantages of high-power tolerance and high efficiency.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"4 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of Perfect Vortex Beams with Complete Control over the Ring Radius and Ring Width\",\"authors\":\"Xin Tao, Yong Liang, Shirui Zhang, Yueqing Li, Minghao Guo, Peng Li\",\"doi\":\"10.3390/photonics10121382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam with the spiral phase plates and the axicons, respectively. Although the method has been used many times by other authors, as far as we know, few people pay attention to the quantitative relationship between the control parameters of the PVB and ring width. The effects of the waist radius of the fundamental Gaussian beam wg, base angle of the axicon γ, and focal length of the lens f on the spot parameters (ring radius ρ, and ring half-width Δ) of PVB are systematically studied. The beam pattern of the generated Bessel–Gaussian beam for different propagation distances behind the axicon and the fundamental Gaussian beam wg is presented. We showed experimentally that the ring radius ρ increases linearly with the increase of the base angle γ and focal length f, while the ring half-width Δ decreases with the increase of the fundamental beam waist radius wg, and increases with enlarging the focal length f. We confirmed the topological charge (TC) of the PVB by the interferogram between the PVB and the reference fundamental Gaussian beam. We also studied experimentally that the size of the generated PVB in the Fourier plane is independent of the TCs. Our approach to generate the PVB has the advantages of high-power tolerance and high efficiency.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics10121382\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121382","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
我们通过对贝塞尔-高斯涡旋束进行傅里叶变换,在实验中产生了完美涡旋束(PVB),它是分别用螺旋相板和轴子对基本高斯束进行调制而产生的。虽然该方法已被其他学者多次使用,但就我们所知,很少有人关注 PVB 控制参数与环宽之间的定量关系。本文系统地研究了基本高斯光束腰半径 wg、轴心基角 γ 和透镜焦距 f 对 PVB 光斑参数(环半径 ρ 和环半宽 Δ)的影响。我们展示了在不同传播距离下产生的贝塞尔-高斯光束的光束模式,以及基本高斯光束 wg。实验表明,环半径 ρ 随基角 γ 和焦距 f 的增大而线性增大,环半宽 Δ 随基波束腰半径 wg 的增大而减小,随焦距 f 的增大而增大。我们还通过实验研究发现,在傅立叶平面上生成的 PVB 的大小与 TC 无关。我们生成 PVB 的方法具有高功率容限和高效率的优点。
Generation of Perfect Vortex Beams with Complete Control over the Ring Radius and Ring Width
We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam with the spiral phase plates and the axicons, respectively. Although the method has been used many times by other authors, as far as we know, few people pay attention to the quantitative relationship between the control parameters of the PVB and ring width. The effects of the waist radius of the fundamental Gaussian beam wg, base angle of the axicon γ, and focal length of the lens f on the spot parameters (ring radius ρ, and ring half-width Δ) of PVB are systematically studied. The beam pattern of the generated Bessel–Gaussian beam for different propagation distances behind the axicon and the fundamental Gaussian beam wg is presented. We showed experimentally that the ring radius ρ increases linearly with the increase of the base angle γ and focal length f, while the ring half-width Δ decreases with the increase of the fundamental beam waist radius wg, and increases with enlarging the focal length f. We confirmed the topological charge (TC) of the PVB by the interferogram between the PVB and the reference fundamental Gaussian beam. We also studied experimentally that the size of the generated PVB in the Fourier plane is independent of the TCs. Our approach to generate the PVB has the advantages of high-power tolerance and high efficiency.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.