A. Doronkina, V. Kochubey, Anastasia V. Maksutova, A. Pravdin, A. M. Mylnikov, N. Navolokin, I. Yanina
{"title":"用于成像的 NaYF4:Yb,Er 上转换纳米粒子:对红细胞的影响","authors":"A. Doronkina, V. Kochubey, Anastasia V. Maksutova, A. Pravdin, A. M. Mylnikov, N. Navolokin, I. Yanina","doi":"10.3390/photonics10121386","DOIUrl":null,"url":null,"abstract":"(1) Background: Upconversion nanoparticles (UCNPs) are a promising tool for biological tissue structure visualization and photodynamic therapy (PDT). The luminescence of such NPs is excited in the spectrum’s near-infrared (NIR) region, while the NPs luminesce in the visible region. Conjugating such NPs with photodynamic dyes that absorb their luminescence makes it possible to increase the depth at which PDT is performed. (2) Methods: We conducted a comprehensive study on the possibility of using NaYF4:Er:Yb UCNPs in vivo for imaging and PDT. The NPs were synthesized by a hydrothermal method. The synthesis of NPs with a size of 80 nm and hexagonal structure was demonstrated. (3) Results: The accumulation of NPs in organs after their intravenous injection into rats was studied. The effect of NPs on the shape, size, and degree of aggregation of red blood cells (RBC) was also investigated. (4) Conclusions: The possibility of luminescent visualization of NPs in histological sections and their subcutaneous distribution is demonstrated. All investigated particles showed moderate toxicity, causing mostly reversible changes.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"22 32","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NaYF4: Yb,Er Upconversion Nanoparticles for Imaging: Effect on Red Blood Cells\",\"authors\":\"A. Doronkina, V. Kochubey, Anastasia V. Maksutova, A. Pravdin, A. M. Mylnikov, N. Navolokin, I. Yanina\",\"doi\":\"10.3390/photonics10121386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(1) Background: Upconversion nanoparticles (UCNPs) are a promising tool for biological tissue structure visualization and photodynamic therapy (PDT). The luminescence of such NPs is excited in the spectrum’s near-infrared (NIR) region, while the NPs luminesce in the visible region. Conjugating such NPs with photodynamic dyes that absorb their luminescence makes it possible to increase the depth at which PDT is performed. (2) Methods: We conducted a comprehensive study on the possibility of using NaYF4:Er:Yb UCNPs in vivo for imaging and PDT. The NPs were synthesized by a hydrothermal method. The synthesis of NPs with a size of 80 nm and hexagonal structure was demonstrated. (3) Results: The accumulation of NPs in organs after their intravenous injection into rats was studied. The effect of NPs on the shape, size, and degree of aggregation of red blood cells (RBC) was also investigated. (4) Conclusions: The possibility of luminescent visualization of NPs in histological sections and their subcutaneous distribution is demonstrated. All investigated particles showed moderate toxicity, causing mostly reversible changes.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"22 32\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics10121386\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121386","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
NaYF4: Yb,Er Upconversion Nanoparticles for Imaging: Effect on Red Blood Cells
(1) Background: Upconversion nanoparticles (UCNPs) are a promising tool for biological tissue structure visualization and photodynamic therapy (PDT). The luminescence of such NPs is excited in the spectrum’s near-infrared (NIR) region, while the NPs luminesce in the visible region. Conjugating such NPs with photodynamic dyes that absorb their luminescence makes it possible to increase the depth at which PDT is performed. (2) Methods: We conducted a comprehensive study on the possibility of using NaYF4:Er:Yb UCNPs in vivo for imaging and PDT. The NPs were synthesized by a hydrothermal method. The synthesis of NPs with a size of 80 nm and hexagonal structure was demonstrated. (3) Results: The accumulation of NPs in organs after their intravenous injection into rats was studied. The effect of NPs on the shape, size, and degree of aggregation of red blood cells (RBC) was also investigated. (4) Conclusions: The possibility of luminescent visualization of NPs in histological sections and their subcutaneous distribution is demonstrated. All investigated particles showed moderate toxicity, causing mostly reversible changes.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.