PhotonicsPub Date : 2024-06-13DOI: 10.3390/photonics11060556
Ayaka Mori, Kyohei Yamashita, Eiji Tokunaga
{"title":"High-Dynamic-Range Absorption Spectroscopy by Generating a Wide Path-Length Distribution with Scatterers","authors":"Ayaka Mori, Kyohei Yamashita, Eiji Tokunaga","doi":"10.3390/photonics11060556","DOIUrl":"https://doi.org/10.3390/photonics11060556","url":null,"abstract":"In absorption spectroscopy, it is challenging to detect absorption peaks with significant differences in their intensity in a single measurement. We enable high-dynamic-range measurements by dispersing scatterers within a sample to create a broad distribution of path lengths (PLs). The sample is placed within an integrating sphere (IS) to capture all scattered light of various PLs. To address the complexities of PLs inside the IS and the sample, we performed a ray-tracing simulation using the Monte Carlo (MC) method, which estimates the measured absorbance A and PL distribution from the sample’s absorption coefficient µa and scattering properties at each wavelength λ. This method was validated using dye solutions with two absorption peaks whose intensity ratio is 95:1, employing polystyrene microspheres (PSs) as scatterers. The results confirmed that both peak shapes were delineated in a single measurement without flattening the high absorption peak. Although the measured peak shapes A(λ) did not align with the actual peak shapes µa(λ), MC enabled the reproduction of µa(λ) from A(λ). Furthermore, the analysis of the PL distribution by MC shows that adding scatterers broadens the distribution and shifts it toward shorter PLs as absorption increases, effectively adjusting it to µa.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141348223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-12DOI: 10.3390/photonics11060555
Oleg Antipov, I. Eranov, S. Balabanov, Anton Dobryinin, Y.A. Getmanovskiy, Valeriy Sharkov, Nikolay Yudin
{"title":"High-Repetition-Rate 2.3–2.7 µm Acousto-Optically Tuned Narrow-Line Laser System Comprising Two Master Oscillators and Power Amplifiers Based on Polycrystalline Cr2+:ZnSe with the 2.1 µm Ho3+:YAG Pulsed Pumping","authors":"Oleg Antipov, I. Eranov, S. Balabanov, Anton Dobryinin, Y.A. Getmanovskiy, Valeriy Sharkov, Nikolay Yudin","doi":"10.3390/photonics11060555","DOIUrl":"https://doi.org/10.3390/photonics11060555","url":null,"abstract":"High-average-power narrow-linewidth tunable solid-state lasers in the wavelength region between 2 and 3 μm are attractive light sources for many applications. This paper reports a narrow-linewidth widely tunable laser system based on the polycrystalline Cr2+:ZnSe elements pumped by repetitively pulsed 2.1 µm Ho3+:YAG laser operating at a pulse rate of tens of kilohertz. An advanced procedure of ZnSe element doping and surface improvement was applied to increase the laser-induced damage threshold, which resulted in an increase in the output power of the Cr2+:ZnSe laser system. The high-average-power laser system comprised double master oscillators and power amplifiers: Ho3+:YAG and Cr2+:ZnSe laser oscillators, and Ho3+:YAG and Cr2+:ZnSe power amplifiers. The output wavelength was widely tuned within 2.3–2.7 µm by means of an acousto-optical tunable filter inside a Cr2+:ZnSe master oscillator cavity. The narrow-linewidth operation at the pulse repetition rate of 20–40 kHz in a high-quality beam with an average output power of up to 9.7 W was demonstrated.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-12DOI: 10.3390/photonics11060552
S. Kobtsev
{"title":"Methods Controlling Radiation Parameters of Mode-Locked All-Fiberized Lasers","authors":"S. Kobtsev","doi":"10.3390/photonics11060552","DOIUrl":"https://doi.org/10.3390/photonics11060552","url":null,"abstract":"Fibre lasers are distinct in that their optical train is decoupled from the environment, especially in the all-fibre format. The attractive side of this decoupling is the simplicity of maintenance (no need to align the cavity or keep the optical elements clean), but the flip side of this is the difficulty one encounters when trying to control the output parameters. The components used in all-fibre laser cavities are usually different from those of free-space laser cavities and require new approaches to control. Essentially, an important task emerges, i.e., research and development of all-fibre laser components able to adjust their parameters (ideally by electronic means) in order to tune key parameters of the output radiation—wavelength, output power, and so on. The present review analyses the existing methods of control over the output parameters of mode-locked all-fibre lasers. It is further noted that a method relying on several independently pumped active media may be promising in this regard.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-12DOI: 10.3390/photonics11060553
Qi Nie, Wenqi Li, Xiao Luo
{"title":"Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators","authors":"Qi Nie, Wenqi Li, Xiao Luo","doi":"10.3390/photonics11060553","DOIUrl":"https://doi.org/10.3390/photonics11060553","url":null,"abstract":"Quantum-cutting luminescent solar concentrators (QC-LSCs) have great potential to serve as large-area solar windows. These QC nanocrystals can realize a photoluminescence quantum yield (PLQY) of as high as 200% with virtually zero self-absorption loss. Based on our previous work, we have constructed a Monte Carlo simulation model that is suitable to simulate the performance of the QC-LSCs, which can take into account the band-edge emissions and near-infrared emissions of the QC-materials. Under ideal PLQY conditions, CsPbClxBr3−x:Yb3+-based LSCs can reach 12% of the size-independent external quantum efficiency (ηext). Even if LSCs have a certain scattering factor, the CsPbClxBr3−x:Yb3+-based LSCs can still obtain an ηext exceeding 6% in the window size (>1 m2). The flux gain (FG) of the CsPbClxBr3−x:Yb3+-based LSC-PV system can reach 14 in the window size, which is a very encouraging result.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-12DOI: 10.3390/photonics11060554
Ailing Zhang, Xiangyu Yang, Junfeng Wang
{"title":"Design of Channel Drop Filters Based on Photonic Crystal with a Dielectric Column with Large Radius inside Ring Resonator","authors":"Ailing Zhang, Xiangyu Yang, Junfeng Wang","doi":"10.3390/photonics11060554","DOIUrl":"https://doi.org/10.3390/photonics11060554","url":null,"abstract":"Photonic crystal channel drop filters (CDFs) play a vital role in optical communication owing to their ability to drop the desired channel. However, it remains challenging to achieve high-efficiency CDFs. Here, we demonstrate a highly efficient three-channel CDF with both high transmission and high quality (Q) factor based on a novel ring resonator that is in the middle of two waveguides. A dielectric column with a large radius replaces the homogeneously distributed dielectric columns inside the ring cavity to modulate the coupling ratio with a straight waveguide, thereby enhancing the transmission and Q factor. The transmission and Q factor of the single-cavity filter are 99.7% and 12,798.4, respectively. The mean value of the three-channel filter based on the basic unit can reach up to 94.6% and 10,617, respectively, and a crosstalk between −30.16 and −50.61 dB is obtained. The proposed CDFs provide efficient filter capability, which reveals great potential in integrated optoelectronics and optical communication.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141355098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-11DOI: 10.3390/photonics11060550
Sanghoon Ahn, Kang Woo Chun, Changkyoo Park
{"title":"Long-Term Stability Test for Femtosecond Laser-Irradiated SnO2-Nanowire Gas Sensor for C7H8 Gas Sensing","authors":"Sanghoon Ahn, Kang Woo Chun, Changkyoo Park","doi":"10.3390/photonics11060550","DOIUrl":"https://doi.org/10.3390/photonics11060550","url":null,"abstract":"In this study, femtosecond (FS) laser irradiation with different laser energy densities of 138, 276, and 414 mJ/cm2 is applied to SnO2-nanowire (NW) gas sensors, and the effect of the FS laser irradiation on the gas sensor response toward toluene (C7H8) gas is investigated. The FS laser irradiation causes oxygen deficiency in the SnO2 NWs and forms SnO and SnOx. Moreover, an embossing surface with multiple nano-sized bumps is created on the SnO2 NW surface because of the FS laser irradiation. The FS laser-irradiated SnO2-NW gas sensor exhibits superior sensing performance compared with the pristine SnO2-NW gas sensor. Moreover, the FS laser energy density significantly affects gas-sensing performance, and the highest sensor response is achieved by the gas sensor irradiated at 138 mJ/cm2. The long-term stability test of the laser-irradiated SnO2-NW gas sensor is performed by comparing fresh and 6-month-old gas sensors in different gas concentrations and relative humidity levels. Comparable gas-sensing behaviors are examined between the fresh and 6-month-old gas sensor, and this verifies the robustness of the laser-irradiated SnO2-NW gas sensor.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141356628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-11DOI: 10.3390/photonics11060551
B. Mihalcea
{"title":"Mathieu–Hill Equation Stability Analysis for Trapped Ions: Anharmonic Corrections for Nonlinear Electrodynamic Traps","authors":"B. Mihalcea","doi":"10.3390/photonics11060551","DOIUrl":"https://doi.org/10.3390/photonics11060551","url":null,"abstract":"The stability properties of the Hill equation are discussed, especially those of the Mathieu equation that characterize ion motion in electrodynamic traps. The solutions of the Mathieu-Hill equation for a trapped ion are characterized by employing the Floquet theory and Hill’s method solution, which yields an infinite system of linear and homogeneous equations whose coefficients are recursively determined. Stability is discussed for parameters a and q that are real. Characteristic curves are introduced naturally by the Sturm–Liouville problem for the well-known even and odd Mathieu equations cem(z,q) and sem(z,q). In the case of a Paul trap, the stable solution corresponds to a superposition of harmonic motions. The maximum amplitude of stable oscillations for ideal conditions (taken into consideration) is derived. We illustrate the stability diagram for a combined (Paul and Penning) trap and represent the frontiers of the stability domains for both axial and radial motion, where the former is described by the canonical Mathieu equation. Anharmonic corrections for nonlinear Paul traps are discussed within the frame of perturbation theory, while the frontiers of the modified stability domains are determined as a function of the chosen perturbation parameter and we demonstrate they are shifted towards negative values of the a parameter. The applications of the results include but are not restricted to 2D and 3D ion traps used for different applications such as mass spectrometry (including nanoparticles), high resolution atomic spectroscopy and quantum engineering applications, among which we mention optical atomic clocks and quantum frequency metrology.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141355426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-09DOI: 10.3390/photonics11060549
Z. Salehnezhad, M. Soroosh, Haraprasad Mondal
{"title":"A Highly Sensitive Plasmonic Graphene-Based Structure for Deoxyribonucleic Acid Detection","authors":"Z. Salehnezhad, M. Soroosh, Haraprasad Mondal","doi":"10.3390/photonics11060549","DOIUrl":"https://doi.org/10.3390/photonics11060549","url":null,"abstract":"In this study, a Kretschmann structure with a hybrid layer of graphene–WS2 is designed to develop a sensitive biosensor for deoxyribonucleic acid detection. The biosensor incorporates a 45 nm gold layer as the active layer and a thin film of chrome as the adhesive layer. Through the optimization of the graphene and WS2 layers, combined with the implementation of a silicon layer, we can enhance the nano-sensor’s sensitivity. The thin silicon layer acts as a protective barrier for the metal, while also increasing the volume of interaction. Consequently, by adjusting the thickness of the active metal and adding a silicon layer, we achieve higher sensitivity and a lower full width at half maximum, leading to sensitivity of 333.33°/RIU. The designed structure is analyzed using numerical techniques and the finite difference time domain method, allowing us to obtain the optical characteristics of the surface plasmon polariton sensor. Various parameters are calculated and evaluated to determine the optimal conditions for the sensor. Furthermore, the total size of the sensor is 2.228 µm2.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141367175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-08DOI: 10.3390/photonics11060547
Shengyuan Zhang, Yuexin Yin, Zihao Wang, Yafan Li, Yuan Zhang, Mengke Yao, Daming Zhang, Ye Li
{"title":"Low-Power-Consumption and Broadband 16-Channel Variable Optical Attenuator Array Based on Polymer/Silica Hybrid Waveguide","authors":"Shengyuan Zhang, Yuexin Yin, Zihao Wang, Yafan Li, Yuan Zhang, Mengke Yao, Daming Zhang, Ye Li","doi":"10.3390/photonics11060547","DOIUrl":"https://doi.org/10.3390/photonics11060547","url":null,"abstract":"A variable optical attenuator (VOA) is a crucial component for optical communication, especially for a variable multiplexer (VMUX) and reconfigurable optical add-drop multiplexer (ROADM). With the capacity increasing dramatically, a large-port-count and low-power-consumption VOA array is urgent for an on-chip system. In this paper, we experimentally demonstrate a 16-channel VOA array based on a polymer/silica hybrid waveguide. The proposed array is able to work over C and L bands. The VOA array shows an average attenuation larger than 14.38 dB with a low power consumption of 15.53 mW. The low power consumption makes it possible to integrate silica-based passive devices with a large port count on-chip.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141369154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotonicsPub Date : 2024-06-08DOI: 10.3390/photonics11060548
Guojun Bai, Yuchen Wei, Bing Chen, Yu Fu
{"title":"Temporal Analysis of Speckle Images in Full-Field Interferometric and Camera-Based Optical Dynamic Measurement","authors":"Guojun Bai, Yuchen Wei, Bing Chen, Yu Fu","doi":"10.3390/photonics11060548","DOIUrl":"https://doi.org/10.3390/photonics11060548","url":null,"abstract":"Vibration measurement is crucial in fields like aviation, aerospace, and automotive engineering, which are trending towards larger, lighter, and more complex structures with increasingly complicated dynamics. Consequently, measuring a structure’s dynamic characteristics has gained heightened importance. Among non-contact approaches, those based on high-speed cameras combined with laser interferometry or computational imaging have gained widespread attention. These techniques yield sequences of images that form a three-dimensional space-time data set. Effectively processing these data is a prerequisite for accurately extracting dynamic deformation information. This paper presents two examples to illustrate the significant advantages of signal processing along the time axis in dynamic interferometric and digital speckle-image-based dynamic measurements. The results show that the temporal process effectively minimizes speckle and electronic noise in the spatial domain and dramatically increases measurement resolutions.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141369255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}