Physical review. EPub Date : 2025-01-01DOI: 10.1103/PhysRevE.111.L013301
Matthew A Dorsey, Carol K Hall
{"title":"Discontinuous molecular dynamics simulations in an external field: Application to two-dimensional ferrofluids.","authors":"Matthew A Dorsey, Carol K Hall","doi":"10.1103/PhysRevE.111.L013301","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.L013301","url":null,"abstract":"<p><p>We introduce a stochastic method for simulating the effect of an external magnetic field on coarse-grained models of magnetic colloids for use in discontinuous molecular dynamics (DMD) simulations. Our method for simulating an external field is illustrated with a coarse-grained model for magnetic squares in two dimensions. Square-shaped particles are represented as four disks bonded together in a 2×2 lattice configuration to create a hard colloidal geometry. Two opposite charges are embedded within the square to mimic the magnetic interactions between particles. The method for simulating an external field stochastically during DMD simulations operates by applying impulses randomly to the charges embedded within each square particle. When one square experiences an interaction with the field, each embedded charge within the square is assigned a new momentum with a specific magnitude and orientation. The magnitude of this momentum is equal to the average of a Maxwell-Boltzmann distribution at the simulation temperature. The orientation of the momentum depends on the charge, either positive or negative, and points either in the same or opposite direction as the field, respectively. The strength of the external field is determined by the average frequency at which the particles experience interactions with the field. The relationship between the stochastic frequency of the field and the field strength is derived from Newton's equation of motion. DMD simulations are performed for large systems of magnetic square particles at various temperatures and external field strengths. The simulation temperature is maintained constant with an Andersen thermostat, while the external field is simulated stochastically, as described above. We find that our simulation techniques reproduce a net system magnetization in close agreement with the two-dimensional equivalent of the Langevin function, while maintaining the simulation temperature constant.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L013301"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical review. EPub Date : 2025-01-01DOI: 10.1103/PhysRevE.111.L012104
Tabea Herrmann, Roland Brandau, Arnd Bäcker
{"title":"Deviations from random-matrix entanglement statistics for kicked quantum chaotic spin-1/2 chains.","authors":"Tabea Herrmann, Roland Brandau, Arnd Bäcker","doi":"10.1103/PhysRevE.111.L012104","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.L012104","url":null,"abstract":"<p><p>It is commonly expected that for quantum chaotic many body systems, the statistical properties approach those of random matrices when increasing the system size. We demonstrate for various kicked spin-1/2 chain models that the average eigenstate entanglement indeed approaches the random matrix result. However, the distribution of the eigenstate entanglement differs significantly. While for autonomous systems such deviations are expected, they are surprising for the more scrambling kicked systems. Similar deviations occur in a tensor-product random matrix model with all-to-all interactions. Therefore, we attribute the origin of the deviations for the kicked spin-1/2 chain models to the tensor-product structure of the Hilbert spaces. As a consequence, this would mean that such many body systems cannot be described by the standard random matrix ensembles.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L012104"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical review. EPub Date : 2025-01-01DOI: 10.1103/PhysRevE.111.L013202
B Clavier, D Zarzoso, D Del-Castillo-Negrete, E Frénod
{"title":"Generative-machine-learning surrogate model of plasma turbulence.","authors":"B Clavier, D Zarzoso, D Del-Castillo-Negrete, E Frénod","doi":"10.1103/PhysRevE.111.L013202","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.L013202","url":null,"abstract":"<p><p>Generative artificial intelligence methods are employed for the first time to construct a surrogate model for plasma turbulence that enables long-time transport simulations. The proposed GAIT (Generative Artificial Intelligence Turbulence) model is based on the coupling of a convolutional variational autoencoder that encodes precomputed turbulence data into a reduced latent space, and a recurrent neural network and decoder that generate new turbulence states 400 times faster than the direct numerical integration. The model is applied to the Hasegawa-Wakatani (HW) plasma turbulence model, which is closely related to the quasigeostrophic model used in geophysical fluid dynamics. Very good agreement is found between the GAIT and the HW models in the spatiotemporal Fourier and Proper Orthogonal Decomposition spectra, and the flow topology characterized by the Okubo-Weiss decomposition. The GAIT model also reproduces Lagrangian transport including the probability distribution function of particle displacements and the effective turbulent diffusivity.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L013202"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical review. EPub Date : 2025-01-01DOI: 10.1103/PhysRevE.111.L012202
Priyanka Rajwani, Sarika Jalan
{"title":"Stochastic Kuramoto oscillators with inertia and higher-order interactions.","authors":"Priyanka Rajwani, Sarika Jalan","doi":"10.1103/PhysRevE.111.L012202","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.L012202","url":null,"abstract":"<p><p>The impact of noise in coupled oscillators with pairwise interactions has been extensively explored. Here, we study stochastic second-order coupled Kuramoto oscillators with higher-order interactions and show that as noise strength increases, the critical points associated with synchronization transitions shift toward higher coupling values. By employing the perturbation analysis, we obtain an expression for the forward critical point as a function of inertia and noise strength. Further, for overdamped systems, we show that as noise strength increases, the first-order transition switches to second-order even for higher-order couplings. We include a discussion on the nature of critical points obtained through Ott-Antonsen ansatz.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L012202"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explosive transition in adaptive Stuart-Landau oscillators with higher-order interactions.","authors":"Umesh Kumar Verma","doi":"10.1103/PhysRevE.111.014302","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.014302","url":null,"abstract":"<p><p>We investigate the nature of the transition to synchronization and death states in nonidentical Stuart-Landau oscillators adaptively coupled with pairwise and higher-order interactions. Our findings reveal that nonidentical Stuart-Landau oscillators globally coupled with higher-order interactions exhibit asynchronous oscillations. In contrast, systems coupled with pairwise interactions exhibit a continuous transition to synchronization. Introducing adaptation in pairwise interactions results in an explosive transition to synchronization. Furthermore, when the system is coupled with both pairwise and higher-order interactions, adaptation leads to an explosive transition to synchronization. For higher values of coupling strength, the coupled system also exhibits an explosive transition to the death state. Extending our analysis to random networks, we observe similar results. These findings align with the behavior observed in coupled Kuramoto oscillators, offering new insights into synchronization dynamics in complex systems with adaptive coupling and higher-order interactions.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014302"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical review. EPub Date : 2025-01-01DOI: 10.1103/PhysRevE.111.L012101
Zdzislaw Burda, Desmond A Johnston, Mario Kieburg
{"title":"Yang-Lee zeros for real-space condensation.","authors":"Zdzislaw Burda, Desmond A Johnston, Mario Kieburg","doi":"10.1103/PhysRevE.111.L012101","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.L012101","url":null,"abstract":"<p><p>Using the electrostatic analogy, we derive an exact formula for the limiting Yang-Lee zero distribution in the random allocation model of general weights. This exhibits a real-space condensation phase transition, which is induced by a pressure change. The exact solution allows one to read off the scaling of the density of zeros at the critical point and the angle at which the locus of zeros hits the critical point. Since the order of the phase transition and critical exponents can be tuned with a single parameter for several families of weights, the model provides a useful testing ground for verifying various relations between the distribution of zeros and the critical behavior, as well as for exploring the behavior of physical quantities in the mesoscopic regime, i.e., systems of large but finite size. The main result is that asymptotically the Yang-Lee zeros are images of a conformal mapping, given by the generating function for the weights, of uniformly distributed complex phases.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L012101"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esko Toivonen, Joni Kaipainen, Matti Molkkari, Joonas Keski-Rahkonen, Rainer Klages, Esa Räsänen
{"title":"Anomalous diffusion in the square soft Lorentz gas.","authors":"Esko Toivonen, Joni Kaipainen, Matti Molkkari, Joonas Keski-Rahkonen, Rainer Klages, Esa Räsänen","doi":"10.1103/PhysRevE.111.014216","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.014216","url":null,"abstract":"<p><p>We demonstrate and analyze anomalous diffusion properties of point-like particles in a two-dimensional system with circular scatterers arranged in a square lattice and governed by smooth potentials, referred to as the square soft Lorentz gas. Our numerical simulations reveal a rich interplay of normal and anomalous diffusion depending on the system parameters. To describe diffusion in normal regimes, we develop a unit cell hopping model that, in the single-hop limit, recovers the Machta-Zwanzig approximation and converges toward the numerical diffusion coefficient as the number of hops increases. Anomalous diffusion is characterized by quasiballistic orbits forming Kolmogorov-Arnold-Moser islands in phase space, alongside a complex tongue structure in parameter space defined by the interscatterer distance and potential softness. The distributions of the particle displacement vector show notable similarities to both analytical and numerical results for a hard-wall square Lorentz gas, exhibiting Gaussian behavior in normal diffusion and long tails due to quasiballistic orbits in anomalous regimes. Our work thus provides a catalog of key dynamical system properties that characterize the intricate changes in diffusion when transitioning from hard billiards to soft potentials.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014216"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Wei, Wei Wang, Yifa Tang, Ralf Metzler, Aleksei Chechkin
{"title":"Fractional Langevin equation far from equilibrium: Riemann-Liouville fractional Brownian motion, spurious nonergodicity, and aging.","authors":"Qing Wei, Wei Wang, Yifa Tang, Ralf Metzler, Aleksei Chechkin","doi":"10.1103/PhysRevE.111.014128","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.014128","url":null,"abstract":"<p><p>We consider the fractional Langevin equation far from equilibrium (FLEFE) to describe stochastic dynamics which do not obey the fluctuation-dissipation theorem, unlike the conventional fractional Langevin equation (FLE). The solution of this equation is Riemann-Liouville fractional Brownian motion (RL-FBM), also known in the literature as FBM II. Spurious nonergodicity, stationarity, and aging properties of the solution are explored for all admissible values α>1/2 of the order α of the time-fractional Caputo derivative in the FLEFE. The increments of the process are asymptotically stationary. However when 1/2<α<3/2, the time-averaged mean-squared displacement (TAMSD) does not converge to the mean-squared displacement (MSD). Instead, it converges to the mean-squared increment (MSI) or structure function, leading to the phenomenon of spurious nonergodicity. When α≥3/2, the increments of FLEFE motion are nonergodic, however the higher order increments are asymptotically ergodic. We also discuss the aging effect in the FLEFE by investigating the influence of an aging time t_{a} on the MSD, TAMSD and autocovariance function of the increments. We find that under strong aging conditions the process becomes ergodic, and the increments become stationary in the domain 1/2<α<3/2.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014128"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strain on the upper surface of a perpendicularly peeled soft film.","authors":"Yancheng Meng, Hui He, Jianqiang Zhang, Luxian Li","doi":"10.1103/PhysRevE.111.015503","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.015503","url":null,"abstract":"<p><p>Soft films serve as the primary support materials for flexible devices. These films are frequently peeled perpendicularly during device preparation and application, resulting in large compression on the upper surface of the bending region and significant damage to the device's performance. Accurately assessing this damage is challenging because of the difficulties in calculating the compression in perpendicularly peeled large-deformation films. In this study, we propose a method to calculate the compressive strain on the upper surface of a bending soft film using only its thickness as the key parameter. Furthermore, we demonstrate that the length of the compressive region is directly proportional to the soft film thickness, whereas the maximum strain is inversely proportional to the thickness. These results provide theoretical guidance for applying soft films in flexible devices.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-2","pages":"015503"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematic study of the role of dissipative environment in regulating entanglement and exciton delocalization in the Fenna-Matthews-Olson complex.","authors":"Luis E Herrera Rodríguez, Alexei A Kananenka","doi":"10.1103/PhysRevE.111.014143","DOIUrl":"https://doi.org/10.1103/PhysRevE.111.014143","url":null,"abstract":"<p><p>In this article, we perform a systematic study of the global entanglement and exciton coherence length dynamics in natural light-harvesting system Fenna-Matthews-Olson (FMO) complex across various parameters of a dissipative environment from low to high temperatures, weak to strong system-environment coupling, and non-Markovian environments. A nonperturbative numerically exact hierarchical equations of motions method is employed to obtain the dynamics of the system. We found that entanglement is driven primarily by the strength of interaction between the system and environment, and it is modulated by the interplay between temperature and non-Markovianity. In contrast, coherence length is found to be insensitive to non-Markovianity. In agreement with previous studies, we do not observe a direct correlation between global entanglement and the efficiency of the excitation energy transfer in the FMO complex. As a new result, we found that the coherence length dynamics is correlated with the excitation energy transfer dynamics.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014143"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}