具有更精确基线模型的模块化。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Brian L Chang, Piet Van Mieghem
{"title":"具有更精确基线模型的模块化。","authors":"Brian L Chang, Piet Van Mieghem","doi":"10.1103/PhysRevE.111.044317","DOIUrl":null,"url":null,"abstract":"<p><p>We derive an expression for the exact probability Pr[i∼j] of a link between a node i with degree d_{i} and a node j with degree d_{j} in a graph belonging to the class of Erdős-Rényi G(N,L) random graphs with N nodes and L links. The probability Pr[i∼j] is commonly approximated as d_{i}d_{j}/2L and appears in the formula of Newman's modularity, which plays a crucial rule in community detection in networks. We show that, when applied to graphs not belonging to the class of Erdős-Rényi random graphs, our formula for Pr[i∼j] is considerably more accurate than d_{i}d_{j}/2L and leads to the detection of different clusters or partitions than the original modularity formula.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-1","pages":"044317"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modularity with a more accurate baseline model.\",\"authors\":\"Brian L Chang, Piet Van Mieghem\",\"doi\":\"10.1103/PhysRevE.111.044317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We derive an expression for the exact probability Pr[i∼j] of a link between a node i with degree d_{i} and a node j with degree d_{j} in a graph belonging to the class of Erdős-Rényi G(N,L) random graphs with N nodes and L links. The probability Pr[i∼j] is commonly approximated as d_{i}d_{j}/2L and appears in the formula of Newman's modularity, which plays a crucial rule in community detection in networks. We show that, when applied to graphs not belonging to the class of Erdős-Rényi random graphs, our formula for Pr[i∼j] is considerably more accurate than d_{i}d_{j}/2L and leads to the detection of different clusters or partitions than the original modularity formula.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 4-1\",\"pages\":\"044317\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.044317\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.044317","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在属于Erdős-Rényi G(N,L)有N个节点和L个链接的随机图类中,我们导出了节点i与节点j之间链接的精确概率Pr[i ~ j]的表达式。概率Pr[i ~ j]通常近似为d_{i}d_{j}/2L,出现在Newman模块化公式中,它在网络社区检测中起着至关重要的作用。我们证明,当应用于不属于Erdős-Rényi随机图类的图时,我们的Pr[i ~ j]公式比d_{i}d_{j}/2L要准确得多,并且可以检测到与原始模块化公式不同的簇或分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modularity with a more accurate baseline model.

We derive an expression for the exact probability Pr[i∼j] of a link between a node i with degree d_{i} and a node j with degree d_{j} in a graph belonging to the class of Erdős-Rényi G(N,L) random graphs with N nodes and L links. The probability Pr[i∼j] is commonly approximated as d_{i}d_{j}/2L and appears in the formula of Newman's modularity, which plays a crucial rule in community detection in networks. We show that, when applied to graphs not belonging to the class of Erdős-Rényi random graphs, our formula for Pr[i∼j] is considerably more accurate than d_{i}d_{j}/2L and leads to the detection of different clusters or partitions than the original modularity formula.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信