{"title":"Hamiltonian control to desynchronize Kuramoto oscillators with higher-order interactions.","authors":"Martin Moriamé, Maxime Lucas, Timoteo Carletti","doi":"10.1103/PhysRevE.111.044307","DOIUrl":null,"url":null,"abstract":"<p><p>Synchronization is a ubiquitous phenomenon in nature. Although it is necessary for the functioning of many systems, too much synchronization can also be detrimental; e.g., (partially) synchronized brain patterns support high-level cognitive processes and bodily control, but hypersynchronization can lead to epileptic seizures and tremors, as in neurodegenerative conditions such as Parkinson's disease. Consequently, a critical research question is how to develop effective pinning control methods capable to reduce or modulate synchronization as needed. Although such methods exist to control pairwise-coupled oscillators, and pinning control for synchronization has been developed in higher-order systems in recent years, there are no desynchronizing control methods for higher-order interactions, despite the increasing evidence of their relevant role in brain dynamics. In this work, we fill this gap by proposing a generalized control method designed to desynchronize Kuramoto oscillators connected through higher-order interactions. Our method embeds a higher-order Kuramoto model into a suitable Hamiltonian flow, and builds upon previous work in Hamiltonian control theory to analytically construct a feedback control mechanism. We numerically show that the proposed method effectively prevents synchronization in synthetic and empirical higher-order networks. Although our findings indicate that pairwise contributions in the feedback loop are often sufficient, the higher-order generalization becomes crucial when pairwise coupling is weak. Finally, we explore the minimum number of controlled nodes required to fully desynchronize oscillators coupled via an all-to-all hypergraph.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-1","pages":"044307"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.044307","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronization is a ubiquitous phenomenon in nature. Although it is necessary for the functioning of many systems, too much synchronization can also be detrimental; e.g., (partially) synchronized brain patterns support high-level cognitive processes and bodily control, but hypersynchronization can lead to epileptic seizures and tremors, as in neurodegenerative conditions such as Parkinson's disease. Consequently, a critical research question is how to develop effective pinning control methods capable to reduce or modulate synchronization as needed. Although such methods exist to control pairwise-coupled oscillators, and pinning control for synchronization has been developed in higher-order systems in recent years, there are no desynchronizing control methods for higher-order interactions, despite the increasing evidence of their relevant role in brain dynamics. In this work, we fill this gap by proposing a generalized control method designed to desynchronize Kuramoto oscillators connected through higher-order interactions. Our method embeds a higher-order Kuramoto model into a suitable Hamiltonian flow, and builds upon previous work in Hamiltonian control theory to analytically construct a feedback control mechanism. We numerically show that the proposed method effectively prevents synchronization in synthetic and empirical higher-order networks. Although our findings indicate that pairwise contributions in the feedback loop are often sufficient, the higher-order generalization becomes crucial when pairwise coupling is weak. Finally, we explore the minimum number of controlled nodes required to fully desynchronize oscillators coupled via an all-to-all hypergraph.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.