临界分支过程网络的时间序列阈值和雪崩动力学。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Lei Tao, Sheng-Jun Wang, Zi-Gang Huang
{"title":"临界分支过程网络的时间序列阈值和雪崩动力学。","authors":"Lei Tao, Sheng-Jun Wang, Zi-Gang Huang","doi":"10.1103/PhysRevE.111.044129","DOIUrl":null,"url":null,"abstract":"<p><p>Avalanche sizes and durations following power-law distributions are observed in many systems and are considered hallmarks of criticality. Time-series thresholding is a commonly used method to define avalanches, but this method is controversial. In this study, we use the time-series thresholding method to define avalanches and investigate the statistical properties of avalanches in the Kinouchi-Copelli (KC) model. We consider two definitions of avalanche size, (1) total area above threshold value reference and (2) total area above zero, and then analyze the size and duration distributions. Our results show that while avalanche size and duration obey a power-law distribution, the exponents of size and duration differ from those of the critical branching process. The scaling relation holds for avalanches defined by the first method but fails for those avalanches tdefined by the second. This study provides new insights into avalanche definition methods and avalanche distribution exponents in continuous time-series.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-1","pages":"044129"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-series thresholding and avalanche dynamics in networks of the critical branching process.\",\"authors\":\"Lei Tao, Sheng-Jun Wang, Zi-Gang Huang\",\"doi\":\"10.1103/PhysRevE.111.044129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Avalanche sizes and durations following power-law distributions are observed in many systems and are considered hallmarks of criticality. Time-series thresholding is a commonly used method to define avalanches, but this method is controversial. In this study, we use the time-series thresholding method to define avalanches and investigate the statistical properties of avalanches in the Kinouchi-Copelli (KC) model. We consider two definitions of avalanche size, (1) total area above threshold value reference and (2) total area above zero, and then analyze the size and duration distributions. Our results show that while avalanche size and duration obey a power-law distribution, the exponents of size and duration differ from those of the critical branching process. The scaling relation holds for avalanches defined by the first method but fails for those avalanches tdefined by the second. This study provides new insights into avalanche definition methods and avalanche distribution exponents in continuous time-series.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 4-1\",\"pages\":\"044129\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.044129\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.044129","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

雪崩的大小和持续时间遵循幂律分布在许多系统中被观察到,并被认为是临界的标志。时间序列阈值法是一种常用的雪崩定义方法,但该方法存在争议。在这项研究中,我们使用时间序列阈值方法来定义雪崩,并研究雪崩在Kinouchi-Copelli (KC)模型中的统计性质。我们考虑了雪崩规模的两种定义,即(1)总面积高于阈值参考值和(2)总面积高于零,并分析了雪崩规模和持续时间的分布。研究结果表明,雪崩的规模和持续时间服从幂律分布,但其规模和持续时间的指数与临界分支过程的指数不同。缩放关系适用于第一种方法定义的雪崩,但不适用于第二种方法定义的雪崩。该研究为连续时间序列雪崩定义方法和雪崩分布指数提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-series thresholding and avalanche dynamics in networks of the critical branching process.

Avalanche sizes and durations following power-law distributions are observed in many systems and are considered hallmarks of criticality. Time-series thresholding is a commonly used method to define avalanches, but this method is controversial. In this study, we use the time-series thresholding method to define avalanches and investigate the statistical properties of avalanches in the Kinouchi-Copelli (KC) model. We consider two definitions of avalanche size, (1) total area above threshold value reference and (2) total area above zero, and then analyze the size and duration distributions. Our results show that while avalanche size and duration obey a power-law distribution, the exponents of size and duration differ from those of the critical branching process. The scaling relation holds for avalanches defined by the first method but fails for those avalanches tdefined by the second. This study provides new insights into avalanche definition methods and avalanche distribution exponents in continuous time-series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信