Ayasha Siddeka, Tanvir Mahtab Khan, Md. Raton Ali, Adnan Hosen, Md. Ferdous Rahman, Sheikh Rashel Al Ahmed
{"title":"Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer","authors":"Ayasha Siddeka, Tanvir Mahtab Khan, Md. Raton Ali, Adnan Hosen, Md. Ferdous Rahman, Sheikh Rashel Al Ahmed","doi":"10.1002/pssa.202400547","DOIUrl":"https://doi.org/10.1002/pssa.202400547","url":null,"abstract":"Herein, a new heterojunction photovoltaic (PV) device is designed by incorporating molybdenum trioxide (MoO<jats:sub>3</jats:sub>) as a hole transport layer (HTL), tin sulfide (SnS) as an absorber, and tungsten disulfide (WS<jats:sub>2</jats:sub>) as an electron transport layer (ETL). The PV outputs of the proposed thin‐film solar cell (TFSC) of Ni/MoO<jats:sub>3</jats:sub>/SnS/WS<jats:sub>2</jats:sub>/FTO/Al are investigated using the widely used solar cell simulator (SCAPS‐1D). It is found that the SnS TFSC with suitable band alignments at both the SnS/WS<jats:sub>2</jats:sub> and MoO<jats:sub>3</jats:sub>/SnS interfaces gives better photoconversion efficiency than the conventional one. To optimize the material properties, the performance parameters, including open‐circuit voltage (<jats:italic>V</jats:italic><jats:sub>oc</jats:sub>), short‐circuit current density (<jats:italic>J</jats:italic><jats:sub>sc</jats:sub>), fill factor (FF), and efficiency, have been calculated by varying the influences of the material's thickness, doping concentration, bulk and interface defect densities, operational temperature, and work function of back‐contact. At optimized thicknesses of 0.1 μm for MoO<jats:sub>3</jats:sub> HTL and 1.0 μm for SnS absorber, the efficiency is estimated to be 30.42% with <jats:italic>V</jats:italic><jats:sub>oc</jats:sub> of 1.02 V, <jats:italic>J</jats:italic><jats:sub>sc</jats:sub> of 34.38 mA cm<jats:sup>−2</jats:sup>, and FF of 87.04% for the suggested TFSC. These outcomes imply that the nontoxic MoO<jats:sub>3</jats:sub> and WS<jats:sub>2</jats:sub> materials can be applied as HTL and ETL into the inexpensive, highly efficient, and environmentally friendly SnS‐based PV cell.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"4 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels","authors":"Running Liang, Cheng Yang, Weiwei Zhang, Dan Zhang, Lusi A, Wenzhuo Hu, Qinxiu Gao, Shaohuang Bian, Haoyu Qi, Junwei Guo, Wenping Lu, Feng Huang","doi":"10.1002/pssa.202400218","DOIUrl":"https://doi.org/10.1002/pssa.202400218","url":null,"abstract":"Chitosan‐based magnetic hydrogel has become a research hotspot in the field of material science due to the driven deformation or movement under the action of magnetic field. The unique properties make it show great application potential in medicine, biosensing, environmental protection, and other fields. Herein, the chitosan‐based nanomagnetic composite hydrogels are prepared by plasma assistance. The surface morphology, infrared spectra, mechanical properties, swelling ratio, water absorption, porosity, and degradation of the prepared hydrogels are investigated. The results prove the superiority of plasma‐assisted preparation of magnetic chitosan hydrogels and provide a new method for the design of smart hydrogels.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"12 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancements in Piezoelectric‐Enabled Devices for Optical Communication","authors":"Agata Roszkiewicz, Magdalena Garlińska, Agnieszka Pregowska","doi":"10.1002/pssa.202400298","DOIUrl":"https://doi.org/10.1002/pssa.202400298","url":null,"abstract":"The ability of piezoelectric materials to convert mechanical energy into electric energy and vice versa has made them desirable in the wide range of applications that oscillate from medicine to the energetics industry. Their implementation in optical communication is often connected with the modulation or other manipulations of the light signals. In this article, the recent advancements in the field of piezoelectrics‐based devices and their promising benefits in optical communication are explored. The application of piezoelectrics‐based devices in optical communication allows dynamic control, modulation, and manipulation of optical signals that lead to a more reliable transmission. It turns out that a combination of artificial‐intelligence‐based algorithms with piezoelectrics can enhance the performance of these devices, including optimization of piezoelectric modulation, adaptive signal processing, control of optical components, and increase the level of energy efficiency. It can enhance signal quality, mitigate interference, and reduce noise‐connected issues. Moreover, this technological fusion can increase the security of optical communication systems. Finally, the potential future research lines are determined.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"49 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Annealing Time Dependence on Creation of SiV, GeV, and SnV in Diamond by Atmospheric Annealing at 1800 °C","authors":"Tomoya Baba, Masatomi Iizawa, Kouta Takenaka, Kosuke Kimura, Airi Kawasaki, Takashi Taniguchi, Masashi Miyakawa, Hiroyuki Okazaki, Osamu Hanaizumi, Shinobu Onoda","doi":"10.1002/pssa.202400303","DOIUrl":"https://doi.org/10.1002/pssa.202400303","url":null,"abstract":"The creation of SiV<jats:sup>−</jats:sup>, GeV<jats:sup>−</jats:sup>, and SnV<jats:sup>−</jats:sup> are presented by the atmospheric annealing in the argon flow. Compared to high‐pressure annealing, in which gas cannot flow, atmospheric annealing with an inert gas flow not only causes less degradation of the sample surface but also has the advantage of reducing equipment cost and preparation time. Excessive annealing time has been shown to reduce the amount of centers created. The optimal annealing time that maximizes formations depends on the type of diamond sample and the implanted ions. Furthermore, inspired by the split‐vacancy structure of the group IV–V centers, atmospheric pre‐annealing at 600 °C to increase the amount of di‐vacancy is demonstrated, followed by annealing at 1800 °C for 1 min. A shorter duration of high‐temperature annealing is expected to qualitatively reduce stress and deterioration of the crystallinity of the diamond sample.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"135 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mykola Abramchuk, Ihor Z. Hlova, Yaroslav Mudryk, Anis Biswas, Rajiv K. Chouhan, Vitalij K. Pecharsky
{"title":"Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6","authors":"Mykola Abramchuk, Ihor Z. Hlova, Yaroslav Mudryk, Anis Biswas, Rajiv K. Chouhan, Vitalij K. Pecharsky","doi":"10.1002/pssa.202400426","DOIUrl":"https://doi.org/10.1002/pssa.202400426","url":null,"abstract":"Layered honeycomb iridates receive significant attention in the materials chemistry and physics fields due to the relevance of their crystal structures to the Kitaev model of a quantum spin liquid (QSL). In quest of liquid‐like magnetic ground state signatures, first‐generation alkali metal iridates A<jats:sub>2</jats:sub>IrO<jats:sub>3</jats:sub> ≡ A<jats:sub>3</jats:sub>[AIr<jats:sub>2</jats:sub>]O<jats:sub>6</jats:sub> (A = Li, Na) and second‐generation iridates <jats:italic>T</jats:italic><jats:sub>3</jats:sub>[AIr<jats:sub>2</jats:sub>]O<jats:sub>6</jats:sub> (<jats:italic>T</jats:italic> = Cu, Ag, H) are developed. <jats:italic>T</jats:italic><jats:sub>3</jats:sub>[AIr<jats:sub>2</jats:sub>]O<jats:sub>6</jats:sub> is synthesized from A<jats:sub>3</jats:sub>[AIr<jats:sub>2</jats:sub>]O<jats:sub>6</jats:sub> via metathesis reactions replacing alkali ions located between honeycomb layers. Herein, the next level of chemical and structural complexity is introduced by synthesizing the honeycomb iridate, Cu<jats:sub>3</jats:sub>ZnIr<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>, in which alkali ions between and within the honeycomb layers are both selectively exchanged with two different transition metals. Analysis of powder X‐Ray diffraction data reveals corrugation of the honeycomb layers in Cu<jats:sub>3</jats:sub>ZnIr<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> that hinders complete magnetic frustration and results in a spin glass behavior observed from magnetization and specific heat data. Thus, Cu<jats:sub>3</jats:sub>ZnIr<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> represents yet another model, which broadens understanding of intricate relationships between intralayer distortions and magnetism of prospective Kitaev QSL compounds.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"163 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hojjat Amrollahi Bioki, Enayatullah Erfani, Mohammad Ismail Ihsas
{"title":"The Impact of Bromine Surface Doping on the Structural, Optical, and Morphological Properties of Bismuth‐Based Perovskite Film as a Light‐Absorber in Perovskite Solar Cells","authors":"Hojjat Amrollahi Bioki, Enayatullah Erfani, Mohammad Ismail Ihsas","doi":"10.1002/pssa.202400512","DOIUrl":"https://doi.org/10.1002/pssa.202400512","url":null,"abstract":"Bismuth‐based perovskite materials have concerned significant attention due to their low‐toxic and stable properties. However, achieving smooth and dense thin films for the preferential growth of bismuth‐based perovskite along the <jats:italic>c</jats:italic>‐axis, which is conducive to the preparation of solar cells, is challenging. Therefore, using halogen atoms to partially replace iodine atoms and constrain anisotropic growth has been shown to be an effective method for obtaining high‐quality perovskite films. Herein, Br doping with varying concentrations is used to treat bismuth‐based perovskite films with larger and denser grains compared to those without doping. When a small amount of Br ions is doped, the surface of the perovskite layer becomes more uniform, significantly improving the compactness of the perovskite film. Additionally, proper Br doping can reduce internal defects in the films, effectively inhibiting nonradiative recombination, enhancing light absorption, and increasing carrier lifetime. The optimal power conversion efficiency of Br‐doped bismuth halide perovskite solar cells is found to be 0.136%, compared to 0.087% for pristine devices.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"12 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaljalalul Abedin Jony, Hasnain Yousuf, Muhammad Aleem Zahid, Muhammad Quddamah Khokhar, Polgampola Chamani Madara, Rafi Ur Rahman, Youngkuk Kim, Maha Nur Aida, Simpy Sanyal, Sangheon Park, Suresh Kumar Dhungel, Junsin Yi
{"title":"Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation","authors":"Jaljalalul Abedin Jony, Hasnain Yousuf, Muhammad Aleem Zahid, Muhammad Quddamah Khokhar, Polgampola Chamani Madara, Rafi Ur Rahman, Youngkuk Kim, Maha Nur Aida, Simpy Sanyal, Sangheon Park, Suresh Kumar Dhungel, Junsin Yi","doi":"10.1002/pssa.202400453","DOIUrl":"https://doi.org/10.1002/pssa.202400453","url":null,"abstract":"The study explores a novel method to combat the Light and Elevated Temperature‐Induced Degradation (LeTID) in solar cell modules, which significantly reduces their efficiency and lifespan. This method involves applying alternating current (AC) of various waveforms (triangular, sinusoidal, and square) and frequencies (5 and 100 kHz) to boron‐doped p‐type passivated emitter rear contact (p‐PERC) solar cell modules. This approach effectively lowers the series resistance at the critical junction between the silver (Ag) contact and the silicon emitter layer of the PERC solar cell, thereby reducing charge recombination hindered by high resistance, especially at elevated temperatures. As a result, there is an improved flow of electrical charges, leading to decreased energy loss and increased solar cell efficiency. The study's findings indicate that a slow, smooth sinusoidal AC waveform at 100 kHz is particularly effective, restoring about 100% of the original performance of the panel. Moreover, oscillations at 5 kHz also show considerable efficacy, recovering more than 96% of the performance. The sinusoidal waveform is noted to surpass both triangular and square waveforms in recovery efficiency. This research highlights the use of high‐frequency AC electricity as a viable strategy to extend the lifespan and enhance the performance of solar panels.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"57 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Warda Al Saidi, Rachid Sbiaa, Suleiman Al Risi, Fatma Al Shanfari, Yannick Dusch, Nicolas Tiercelin
{"title":"Control of Skyrmions in Confined Devices for Multistate Memory Application","authors":"Warda Al Saidi, Rachid Sbiaa, Suleiman Al Risi, Fatma Al Shanfari, Yannick Dusch, Nicolas Tiercelin","doi":"10.1002/pssa.202400489","DOIUrl":"https://doi.org/10.1002/pssa.202400489","url":null,"abstract":"The dynamics and stability of magnetic skyrmions within a nano‐track with multiple confinements are investigated. The motion of a single skyrmion under a polarized electric current is studied. By adjusting the current magnitude and pulse width, the study reveals the possibility of pinning the skyrmion in each confinement. The depinning of the skyrmion from the top confinement requires two pulses with adjustable time delay while a single pulse is enough to depin it for the case of bottom confinement. The study is extended to two skyrmions and it is found that once a skyrmion is pinned in one confinement, the second one stabilizes in the nearest available empty state. The results show that a multistate device could be obtained with the existence of only one skyrmion per state. This scheme offers an accurate way of controlling the resistance of the devices and thus could be used for multistate memory devices.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"135 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combined Confocal‐Atomic‐Force Microscope Setup for Quantum Sensing Applications with Sub‐diffractional Spatial Resolution","authors":"Sergei Tofimov, Boris Naydenov","doi":"10.1002/pssa.202400541","DOIUrl":"https://doi.org/10.1002/pssa.202400541","url":null,"abstract":"Quantum sensors find applications ranging from material science to biophysics. Nitrogen‐vacancy (NV) center in diamond has been successfully implemented for measuring various types of signals. Optical NV center readout, routinely used in confocal microscopes, allows achieving high spatial resolution down to the diffraction limit. This work describes in detail the combined confocal‐atomic‐force microscope (confocal‐AFM), which takes advantage of sharp AFM cantilevers, and shows its possible applications for nanoscale resolution. It demonstrates the sub‐diffractional localization of NV centers with platinum‐coated cantilevers and the ability to separately address optically unresolved sensors using cantilevers with ferromagnetic coating. The presented setup exhibits a lateral resolution of 13 nm, providing a tool for nanoscale quantum sensing.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"75 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gold Nanoparticle‐Based Sensing of Pesticides and Fertilizers in Aqueous System: A Review","authors":"Natasya Salsabiila, Marlia Morsin, Nur Liyana Razali, Suratun Nafisah, Farhanahani Mahmud, Chin Fhong Soon, Rahmat Sanudin, Radin Maya Saphira Radin Mohamed, Muhammad Hanif Hasbullah","doi":"10.1002/pssa.202400439","DOIUrl":"https://doi.org/10.1002/pssa.202400439","url":null,"abstract":"The extensive use of pesticides and fertilizers in agriculture has led to significant environmental pollution, particularly in aqueous systems. This review provides an inclusive overview of the advancements in the application of gold nanoparticles (GNPs), specifically for the sensing of pesticides and fertilizers on surface water. The novelty of this work lies in its focused analysis of the unique localized surface plasmon resonance properties of GNPs that enable highly sensitive and selective detection of contaminants on surface water. Various synthesis methods and detection mechanisms are discussed, emphasizing the integration of GNP‐based sensors with modern analytical techniques to enhance detection limits and response time. The review also highlights the significance of monitoring agricultural chemicals in water systems from an environmental perspective. In addition, this review also reveals the potential of GNPs contribution toward sustainable agricultural practices by providing reliable, rapid, and cost‐effective sensing solutions. Future perspectives on the development of GNP‐based sensors, including the fundamental challenges in designing GNP sensors, such as incorporation with other materials, miniaturized and portable sensing devices, and field‐testing validation are also presented.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"68 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}