Jolien De Lepeleire, Ratnesh Chandra Mishra, Jana Verstraete, Jose Antonio Pedroza Garcia, Christophe Stove, Lieven De Veylder, Dominique Van Der Straeten
{"title":"Folate depletion impact on the cell cycle results in restricted primary root growth in Arabidopsis.","authors":"Jolien De Lepeleire, Ratnesh Chandra Mishra, Jana Verstraete, Jose Antonio Pedroza Garcia, Christophe Stove, Lieven De Veylder, Dominique Van Der Straeten","doi":"10.1007/s11103-025-01554-0","DOIUrl":"10.1007/s11103-025-01554-0","url":null,"abstract":"<p><p>Folates are vital one carbon donors and acceptors for a whole range of key biochemical reactions, including the biosynthesis of DNA building blocks. Plants use one carbon metabolism as a jack of all trades in their growth and development. Depletion of folates impedes root growth in Arabidopsis thaliana, but the mechanistic basis behind this function is still obscure. A global transcriptomic study hinted that folate depletion may cause misregulation of cell cycle progression. However, investigations on a direct connection thereof are scarce. We confirmed the effect of methotrexate (MTX), a folate biosynthesis inhibitor, on the expression of cell cycle genes. Subsequently, we determined the effect of MTX on root morphology and cell cycle progression through phase-specific cell cycle reporter analyses. Our study reveals that folate depletion affects the expression of cell cycle regulatory genes in roots, thereby suppressing cell cycle progression. We confirmed, through DNA labelling by EdU, that MTX treatment leads to arrest in the S phase of meristematic cells, likely due to the lack of DNA precursors. Further, we noted an accumulation of the A-type CYCA3;1 cyclin at the root tip, suggesting a possible link with the observed loss of apical dominance. Overall, our study shows that the restricted cell division and cell cycle progression is one of the reasons behind the loss of primary root growth upon folate depletion.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"31"},"PeriodicalIF":3.9,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of the sucrose synthase gene in promoting thorn occurrence and vegetative growth in Lycium ruthenicum.","authors":"Wenhui Liu, Weiman Xu, Yue Gao, Xinyu Qi, Fuqiang Liu, Jiawen Wang, Lujia Li, Yuliang Zhou, Wenxin Chen, Yingyue Jiang, Jianguo Cui, Yucheng Wang, Qin-Mei Wang","doi":"10.1007/s11103-025-01560-2","DOIUrl":"10.1007/s11103-025-01560-2","url":null,"abstract":"<p><p>Lycium ruthenicum is a highly valued ecological and economic shrub, but its abundant thorns disrupt production processes. Previous studies suggested that the sucrose synthase gene (LrSUS) in L. ruthenicum may influence thorn occurrence, presenting potential for breeding thornless varieties suited for cultivation. To explore this, the full-length CDS of LrSUS was cloned, and a novel stable genetic transformation system mediated by Agrobacterium tumefaciens was developed. Through this system, both LrSUS overexpression and suppression lines were generated. While suppression lines exhibited slow growth and failed to survive post-transplant, overexpression lines demonstrated accelerated growth, with significant increases in adventitious root number and length. Upon transplanting, the overexpression lines also showed enhanced thorn occurrence, alongside notable increases in thorn length, leaf size, stem diameter, photosynthetic rate, and sugar content. Subcellular localization analysis using a transient expression method based on the injection of L. ruthenicum indicated that the LrSUS gene product is localized in the chloroplasts. Key genes involved in LrSUS/ sucrose affecting thorn occurrence event were identified through high throughput transcriptome analysis and a hypothetical mechanistic model was established. This study provides valuable insights into the function of LrSUS and establishes a foundation for manipulating thorn phenotypes in L. ruthenicum and related species.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"30"},"PeriodicalIF":3.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Virtual staining from bright-field microscopy for label-free quantitative analysis of plant cell structures.","authors":"Manami Ichita, Haruna Yamamichi, Takumi Higaki","doi":"10.1007/s11103-025-01558-w","DOIUrl":"10.1007/s11103-025-01558-w","url":null,"abstract":"<p><p>The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry. The model also accurately documented the shape of Arabidopsis pavement cells in both wild type and the bpp125 triple mutant, which has an altered pavement cell phenotype. Metrics such as cell area, circularity, and solidity obtained from virtual staining analyses were highly correlated with those obtained by manual measurements of cell features from microscopy images. Furthermore, the versatility of virtual staining was highlighted by its application to track chloroplast movement in Egeria densa. The method was also effective for classifying live and dead BY-2 cells using texture-based machine learning, suggesting that virtual staining can be applied beyond typical segmentation tasks. Although this method still has some limitations, its non-invasive nature and efficiency make it highly suitable for label-free, dynamic, and high-throughput analyses in quantitative plant cell biology.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"29"},"PeriodicalIF":3.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Directed evolution of diacylglycerol acyltransferases 2 promotes lipids and triglyceride accumulation.","authors":"Tinghui Feng, Qiang Zhang, Tong Gao, Jiacong Gao, Jiahao Fang, Xiaodan Zhang, Juane Dong, Zongsuo Liang","doi":"10.1007/s11103-025-01552-2","DOIUrl":"10.1007/s11103-025-01552-2","url":null,"abstract":"<p><p>Triacylglycerol (TAG) is a major component of plant-neutral lipids. Diacylglycerol acyltransferase 2 (DGAT2) plays an important role in plant oil accumulation by catalyzing the final step of the Kennedy pathway. In this study, ten DGAT2 sequences were originating from different oil crops into the TAG-deficient yeast strain H1246, to compare their enzyme activity of oil synthesis and filter out potential amino acid residue sites for directed evolution. Based on the synthesis efficiency of total lipids, TAGs, and the topology models of these DGAT2s, five possible amino acid sites were identified that may affect the synthesis of total lipids and TAGs. In the H1246 yeast expression system, HaDGAT2 significantly increased the total oil and TAG content; however, ClDGAT2 was weak in synthesizing both oil and TAG. Thus, building on HaDGAT2 and ClDGAT2, these amino acid substitutions were created by point-to-point mutating and substantially affected the oil or TAG synthesis ability of DGAT2s. Among the five amino acid substitutions, mutations at residue (3) successfully make HaDGAT2 less capable of synthesizing lipids and TAG, and ClDGAT2 more capable of synthesizing total lipids and TAG. Except mutations at residue (2), all residue mutations contributed to a weaker ability of fatty acid synthesis. In addition, ten mutant DGAT2s and two parental DGAT2s were overexpressed in tobacco leaves to reveal their lipid synthesis function. This approach helped us to authenticate the significance of these loci. In varying degrees, those mutations enhanced the ability of ClDGAT2 to synthesize lipids, attenuated the ability of HaDGAT2 to synthesize lipids, and altered preference for fatty acids in tobacco.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"28"},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Mineri, Giulia Ave Bono, Elisabetta Sergi, Pierangela E Colleoni, Piero Morandini, Giulio Vicentini, Fabio Fornara, Vittoria Brambilla
{"title":"OsMAINTENANCE OF MERISTEM LIKE 1 controls style number at high temperatures in rice.","authors":"Lorenzo Mineri, Giulia Ave Bono, Elisabetta Sergi, Pierangela E Colleoni, Piero Morandini, Giulio Vicentini, Fabio Fornara, Vittoria Brambilla","doi":"10.1007/s11103-025-01553-1","DOIUrl":"10.1007/s11103-025-01553-1","url":null,"abstract":"<p><p>OsMAIL1 encodes for a rice protein of the Plant Mobile Domain (PMD) family and is strongly upregulated during floral induction in response to the presence of the florigens Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Although OsMAIL1 expression depends on the florigens, osmail1 null mutants do not show delay in flowering time, rather OsMAIL1 participates in ensuring successful reproduction. Indeed, when day temperatures reach 35 °C (7 °C higher than standard greenhouse conditions), osmail1 mutants show increased sterility due to abnormal pistil development with about half of the plants developing three styles topped by stigmas. OsMAIL1 expression correlates with that of carpel identity genes and RNA-seq of osmail1-1 mutant compared to the wt during inflorescence development showed that OsMAIL1 is required to activate carpel identity genes expression when floral meristems are about to be initiated. OsMAIL1 is a newly characterized rice gene that specifically controls carpel development under heat stress, ensuring plant female fertility in these conditions.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"24"},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Zhang, Tianjie Li, Longfei Gao, Dinakaran Elango, Jiaxin Song, Chaijing Su, Mingxuan Li, Weihua Zhang, Ming Chi, Xiaoyu Wang, Ying Wu
{"title":"Correlation analysis of transcriptome and metabolomics and functional study of Galactinol synthase gene (VcGolS3) of blueberry under salt stress.","authors":"Fan Zhang, Tianjie Li, Longfei Gao, Dinakaran Elango, Jiaxin Song, Chaijing Su, Mingxuan Li, Weihua Zhang, Ming Chi, Xiaoyu Wang, Ying Wu","doi":"10.1007/s11103-025-01557-x","DOIUrl":"10.1007/s11103-025-01557-x","url":null,"abstract":"<p><p>Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress. Our findings indicate that blueberries primarily adapt to salt stress by modulating pathways associated with carbohydrate metabolism, organic acid metabolism, amino acid metabolism, and various organic compounds. Key metabolites involved in this response include sucrose, propionic acid, and palmitic acid. A total of 241 transcription factors were differentially expressed, with significant involvement from families such as AP2, Dof, GATA, WRKY, and TCP. Notably, the galactose metabolism pathway was associated with 5 DAMs and 24 DEGs, while the starch and sucrose metabolism pathway contained 5 DAMs and 23 DEGs, highlighting their crucial roles in mitigating salt stress. Overexpression of VcGolS3 in transgenic Arabidopsis conferred tolerance to salt and drought stresses, primarily evidenced by a significant increase in GolS enzyme activity and reduced ROS accumulation. This study provides valuable insights into the molecular mechanisms underlying the blueberry response to salt stress and lays the groundwork for breeding salt- and drought-tolerant blueberry varieties.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"27"},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NnMTP10 from Nelumbo nucifera acts as a transporter mediating manganese and iron efflux.","authors":"Hengliang Hu, Yuting He, Yan Gao, Siying Chen, Tianyu Gu, Jiashi Peng","doi":"10.1007/s11103-025-01556-y","DOIUrl":"10.1007/s11103-025-01556-y","url":null,"abstract":"<p><p>Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus. Subcellular localization to the plasma membrane, increased manganese (Mn) and iron (Fe) tolerance and reduced metal accumulation in yeast transformants demonstrated that the protein functions as an exporter to mediate the efflux of Mn and Fe. Arabidopsis overexpressing NnMTP10 exhibited less Mn accumulation in roots, increased long-distance transport to shoots, and increased tolerance to Mn stress under high-Mn conditions. However, the accumulation and tolerance of Fe in Arabidopsis transformants are opposite to those of Mn. Further analysis revealed that excessive Fe in the root apoplast exported by NnMTP10 was sequestrated by the cell wall, thereby reducing the transport of Fe to the shoot. Correspondingly, the expression of NnMTP10 in the roots of lotus was increased under the high-Mn treatment but decreased under the high-Fe treatment. These results suggest that NnMTP10 is involved in the long-distance transport of Mn and Fe in lotus and may play a role in coordinating the adaptation to stresses caused by excessive Mn and Fe.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"26"},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianrong Li, Xiaofang Zeng, Zhengyu Jin, Tao Zhou, Chaoting Lang, Jin Qin, Qingqing Zhang, Haibo Lan, Yan Li, Huaming An, Degang Zhao
{"title":"Genome-wide analysis of the SPL family in Zanthoxylum armatum and ZaSPL21 promotes flowering and improves salt tolerance in transgenic Nicotiana benthamiana.","authors":"Jianrong Li, Xiaofang Zeng, Zhengyu Jin, Tao Zhou, Chaoting Lang, Jin Qin, Qingqing Zhang, Haibo Lan, Yan Li, Huaming An, Degang Zhao","doi":"10.1007/s11103-024-01530-0","DOIUrl":"10.1007/s11103-024-01530-0","url":null,"abstract":"<p><p>Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z. armatum. Phylogenetic and collinearity analyzes demonstrated a close relationship between ZaSPLs and ZbSPLs from B subgenomes of Zanthoxylum bungeanum. Our miRNA sequencing revealed a high degree of conservation of miR156a within Z. armatum, with the za-miR156a sequence identical to miR156-5p in Arabidopsis thaliana and Citrus sinensis. Of the 45 genes identified by ZaSPLs, 21 were targeted by za-miR156a, transient co-expression experiments in N. benthamiana demonstrated the targeting relationship between za-miR156 and ZaSPL21. Furthermore, RNA-seq and qRT-PCR analysis revealed that ZaSPL genes exhibited elevated expression levels in juvenile tissues of Z. armatum. The expression of nine representative ZaSPL genes were upregulated under polyethylene glycol (PEG) and abscisic acid (ABA). Overexpression of ZaSPL21 delayed the germination of transgenic tobacco and facilitated the flowering process in transgenic N. benthamiana. Significant up-regulation in the expression levels of flowering-related genes such as NbFT1, NbPIP2;1, NbTCP1, NbCOL1, NbGI2, NbGAI1, NbCKX2, and NbARR4 was observed in transgenic plants, suggesting that ZaSPL21 may stimulate plant flowering by regulation of these genes. Furthermore, ZaSPL21 also increased the germination speed of transgenic tobacco seeds during drought and salt stress conditions, and improved the salt tolerance of transgenic seedlings. In conclusion, our study contributes to understanding the functional analysis of the SPL gene family in Z. armatum and emphasizes the crucial role of ZaSPL21 in improving tolerance to salt and promoting flowering. The results offer potential strategies for the further utilization of these genes to improve the salt tolerance of Z. armatum.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"23"},"PeriodicalIF":3.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangjun Kong, Rui Wang, Peipei Jia, Hengbin Li, Aziz Khan, Ali Muhammad, Sajid Fiaz, Qunce Xing, Zhiyong Zhang
{"title":"Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.).","authors":"Xiangjun Kong, Rui Wang, Peipei Jia, Hengbin Li, Aziz Khan, Ali Muhammad, Sajid Fiaz, Qunce Xing, Zhiyong Zhang","doi":"10.1007/s11103-024-01545-7","DOIUrl":"10.1007/s11103-024-01545-7","url":null,"abstract":"<p><p>Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.1 mM NO<sub>3</sub><sup>-</sup>) and normal (5.0 mM NO<sub>3</sub><sup>-</sup>) effects on the morpho-physiological and molecular attributes of peanut seedlings. Low-N stress significantly decreased peanut plant height, leaf surface area, total root length, and primary root length after 10 days of treatment. Meanwhile, glutamate dehydrogenase, glutamine oxoglutarate aminotransferase activities, chlorophyll, and soluble protein contents were substantially decreased. Impairment in these parameters further suppressed photochemical efficiency (Fv/Fm), and chlorophyll fluorescence parameters (PI<sub>ABS</sub>), under low-N stress. Transcriptome sequencing analysis showed a total of 2139 DEGs were identified between the two treatments. KEGG enrichment annotation analysis of DEGs revealed that 119 DEGs related to 10 pathways, including N assimilation, photosynthesis, starch, and sucrose degradation, which may respond to low-N stress in peanuts. Combined with transcriptome, small RNA, and degradome sequencing, we found that PC-3p-142756_56/A.T13EMM (CML3) and PC-5p-43940_274/A.81NSYN (YTH3) are the main modules contributing to low N stress tolerance in peanut crops. Peanut seedlings exposed to N starvation exhibited suppressed gene expression related to nitrate transport and assimilation, chlorophyll synthesis, and carbon assimilation, while also showing improved gene expression in N compensation/energy supply and carbohydrate consumption. Additionally, low N stress tolerance was strongly associated with the miRNA.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"19"},"PeriodicalIF":3.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}