Plant Molecular Biology最新文献

筛选
英文 中文
Multi-omic applications for understanding and enhancing tropical fruit flavour. 应用多原子技术了解和提升热带水果风味。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-07-08 DOI: 10.1007/s11103-024-01480-7
Joshua Lomax, Rebecca Ford, Ido Bar
{"title":"Multi-omic applications for understanding and enhancing tropical fruit flavour.","authors":"Joshua Lomax, Rebecca Ford, Ido Bar","doi":"10.1007/s11103-024-01480-7","DOIUrl":"10.1007/s11103-024-01480-7","url":null,"abstract":"<p><p>Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"83"},"PeriodicalIF":3.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant. OsNAC121 调节水稻植株的根系发育、分蘖、圆锥花序形态和籽粒灌浆。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-07-02 DOI: 10.1007/s11103-024-01476-3
Nazma Anjum, Mrinal K Maiti
{"title":"OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant.","authors":"Nazma Anjum, Mrinal K Maiti","doi":"10.1007/s11103-024-01476-3","DOIUrl":"10.1007/s11103-024-01476-3","url":null,"abstract":"<p><p>Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"82"},"PeriodicalIF":3.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of stomatal development by epidermal, subepidermal and long-distance signals. 表皮、亚表皮和远距离信号对气孔发育的调控。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-28 DOI: 10.1007/s11103-024-01456-7
Liang Chen
{"title":"Regulation of stomatal development by epidermal, subepidermal and long-distance signals.","authors":"Liang Chen","doi":"10.1007/s11103-024-01456-7","DOIUrl":"10.1007/s11103-024-01456-7","url":null,"abstract":"<p><p>Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO<sub>2</sub>) while release of water vapour and oxygen (O<sub>2</sub>), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"80"},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate. BdRCN4是Brachypodium distachyon TFL1的同源物,参与顶端分生组织命运的调控。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-28 DOI: 10.1007/s11103-024-01467-4
Rodrigo Machado, Sebastián Elias Muchut, Carlos Dezar, Andrea Guadalupe Reutemann, Carlos Agustín Alesso, María Margarita Günthardt, Abelardo Carlos Vegetti, John Vogel, Nora G Uberti Manassero
{"title":"BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate.","authors":"Rodrigo Machado, Sebastián Elias Muchut, Carlos Dezar, Andrea Guadalupe Reutemann, Carlos Agustín Alesso, María Margarita Günthardt, Abelardo Carlos Vegetti, John Vogel, Nora G Uberti Manassero","doi":"10.1007/s11103-024-01467-4","DOIUrl":"10.1007/s11103-024-01467-4","url":null,"abstract":"<p><p>In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"81"},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight. 拟南芥根尖对太空飞行的转录反应
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-27 DOI: 10.1007/s11103-024-01478-1
Mohammad Shahbazi, Lindsay A Rutter, Richard Barker
{"title":"Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight.","authors":"Mohammad Shahbazi, Lindsay A Rutter, Richard Barker","doi":"10.1007/s11103-024-01478-1","DOIUrl":"10.1007/s11103-024-01478-1","url":null,"abstract":"<p><p>Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"79"},"PeriodicalIF":3.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of soybean RNL and TIR domain proteins. 大豆 RNL 和 TIR 结构域蛋白质的全面回顾。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-26 DOI: 10.1007/s11103-024-01473-6
Joydeep Chakraborty
{"title":"A comprehensive review of soybean RNL and TIR domain proteins.","authors":"Joydeep Chakraborty","doi":"10.1007/s11103-024-01473-6","DOIUrl":"10.1007/s11103-024-01473-6","url":null,"abstract":"<p><p>Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"78"},"PeriodicalIF":3.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of CgHSFB1 in the regulation of self-incompatibility in 'Shatian' pummelo. CgHSFB1 参与调控'沙田'西瓜的自相容性。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-23 DOI: 10.1007/s11103-024-01475-4
Chenchen Liu, Xin Zheng, Jianbing Hu, Qiang Xu, Hao Wen, Zhezhong Zhang, Ran Liu, Xiangling Chen, Zongzhou Xie, Junli Ye, Xiuxin Deng, Lijun Chai
{"title":"Involvement of CgHSFB1 in the regulation of self-incompatibility in 'Shatian' pummelo.","authors":"Chenchen Liu, Xin Zheng, Jianbing Hu, Qiang Xu, Hao Wen, Zhezhong Zhang, Ran Liu, Xiangling Chen, Zongzhou Xie, Junli Ye, Xiuxin Deng, Lijun Chai","doi":"10.1007/s11103-024-01475-4","DOIUrl":"10.1007/s11103-024-01475-4","url":null,"abstract":"<p><p>As self-incompatibility is a major issue in pummelo breeding and production, its mechanism in citrus was analyzed to improve breeding efficiency and reduce production costs. Rutaceae belongs to S-RNase type of gametophytic self-incompatibility. While the function of S-RNase/SLF and the mechanism of self-incompatibility have been studied extensively, the transcriptional regulation of S-RNase has been less studied. We performed transcriptome sequencing with the styles of 'Shatian' pummelo on the day of anthesis and 1-5 days before anthesis, and found that the transcript level of S-RNase gradually decreased with flower development. By analyzing differentially expressed genes and correlation with the expression trend of S-RNase, we identified a candidate gene, CgHSFB1, and utilized biochemical experiments such as yeast one-hybrid assay, electrophoretic mobility shift assay and dual-luciferase assay, as well as transient transformation of citrus calli and Citrus microcarpa and demonstrated that CgHSFB1 could directly bind to the S<sub>1</sub>-RNase promoter and repress the expression of S<sub>1</sub>-RNase, which is involved in the pummelo self-incompatibility response. In contrast, CgHSFB1 did not bind to the promoter of S<sub>2</sub>-RNase, and there was specificity in the regulation of S-RNase.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"77"},"PeriodicalIF":3.9,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Five amino acid mismatches in the zinc-finger domains of Cellulose Synthase 5 and Cellulose Synthase 6 cooperatively modulate their functional properties by controlling homodimerization in Arabidopsis. 拟南芥中纤维素合成酶 5 和纤维素合成酶 6 的锌指结构域中的五个氨基酸错配通过控制同源二聚体来协同调节它们的功能特性。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-18 DOI: 10.1007/s11103-024-01471-8
Sungjin Park, Shi-You Ding
{"title":"Five amino acid mismatches in the zinc-finger domains of Cellulose Synthase 5 and Cellulose Synthase 6 cooperatively modulate their functional properties by controlling homodimerization in Arabidopsis.","authors":"Sungjin Park, Shi-You Ding","doi":"10.1007/s11103-024-01471-8","DOIUrl":"10.1007/s11103-024-01471-8","url":null,"abstract":"<p><p>Cellulose synthase 5 (CESA5) and CESA6 are known to share substantial functional overlap. In the zinc-finger domain (ZN) of CESA5, there are five amino acid (AA) mismatches when compared to CESA6. These mismatches in CESA5 were replaced with their CESA6 counterparts one by one until all were replaced, generating nine engineered CESA5s. Each N-terminal enhanced yellow fluorescent protein-tagged engineered CESA5 was introduced to prc1-1, a cesa6 null mutant, and resulting mutants were subjected to phenotypic analyses. We found that five single AA-replaced CESA5 proteins partially rescue the prc1-1 mutant phenotypes to different extents. Multi-AA replaced CESA5s further rescued the mutant phenotypes in an additive manner, culminating in full recovery by CESA5<sup>G43R + S49T+S54P+S80A+Y88F</sup>. Investigations in cellulose content, cellulose synthase complex (CSC) motility, and cellulose microfibril organization in the same mutants support the results of the phenotypic analyses. Bimolecular fluorescence complementation assays demonstrated that the level of homodimerization in every engineered CESA5 is substantially higher than CESA5. The mean fluorescence intensity of CSCs carrying each engineered CESA5 fluctuates with the degree to which the prc1-1 mutant phenotypes are rescued by introducing a corresponding engineered CESA5. Taken together, these five AA mismatches in the ZNs of CESA5 and CESA6 cooperatively modulate the functional properties of these CESAs by controlling their homodimerization capacity, which in turn imposes proportional changes on the incorporation of these CESAs into CSCs.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"76"},"PeriodicalIF":3.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis. 玉米辅助因子 ZmARF1 在转基因拟南芥中赋予多种抗非生物性胁迫能力
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-15 DOI: 10.1007/s11103-024-01470-9
Ling Liu, Ying Gong, Baba Salifu Yahaya, Yushu Chen, Dengke Shi, Fangyuan Liu, Junlin Gou, Zhanmei Zhou, Yanli Lu, Fengkai Wu
{"title":"Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis.","authors":"Ling Liu, Ying Gong, Baba Salifu Yahaya, Yushu Chen, Dengke Shi, Fangyuan Liu, Junlin Gou, Zhanmei Zhou, Yanli Lu, Fengkai Wu","doi":"10.1007/s11103-024-01470-9","DOIUrl":"10.1007/s11103-024-01470-9","url":null,"abstract":"<p><p>Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"75"},"PeriodicalIF":3.9,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cytosol-tethered YHB variant of phytochrome B retains photomorphogenic signaling activity. 植物色素 B 的细胞质系链 YHB 变体保留了光形态发生信号的活性。
IF 3.9 2区 生物学
Plant Molecular Biology Pub Date : 2024-06-14 DOI: 10.1007/s11103-024-01469-2
Wei Hu, J Clark Lagarias
{"title":"A cytosol-tethered YHB variant of phytochrome B retains photomorphogenic signaling activity.","authors":"Wei Hu, J Clark Lagarias","doi":"10.1007/s11103-024-01469-2","DOIUrl":"10.1007/s11103-024-01469-2","url":null,"abstract":"<p><p>The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyB<sup>Y276H</sup> (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHB<sup>G767R</sup> variant in transgenic Arabidopsis seedlings. We show that YHB<sup>G767R</sup> elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHB<sup>G767R</sup>. However, as expected for a cytoplasm-tethered phyB, YHB<sup>G767R</sup> elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHB<sup>G767R</sup> also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"72"},"PeriodicalIF":3.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信