Tomato miR398 knockout disrupts ROS dynamics during stress conferring heat tolerance but hypersusceptibility to necrotroph infection.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shreya Chowdhury, Ananya Mukherjee, Raghuvir Singh, Sushmita Talukdar, Shrabani Basak, Rohit Das, Sayan Mal, Pallob Kundu
{"title":"Tomato miR398 knockout disrupts ROS dynamics during stress conferring heat tolerance but hypersusceptibility to necrotroph infection.","authors":"Shreya Chowdhury, Ananya Mukherjee, Raghuvir Singh, Sushmita Talukdar, Shrabani Basak, Rohit Das, Sayan Mal, Pallob Kundu","doi":"10.1007/s11103-025-01563-z","DOIUrl":null,"url":null,"abstract":"<p><p>An imbalance between ROS production and scavenging during stress results in oxidative bursts, which causes cellular damage. miR398 is a regulator of ROS scavenging since it targets crucial Cu/Zn superoxide dismutases (CSDs). Established functional studies aligned miR398 with plants' heat and heavy metal stress fitness. However, a knowledge gap in the dynamics of miR398-CSD interaction for redox regulation during pathogenic development impeded their use in crop improvement programmes. We use tomato, Solanum lycopersicum, plants, and necrotrophic and biotrophic pathogens to show that a complex transcriptional and post-transcriptional regulatory circuit maintains SlmiR398 and its target SlCSD genes' level. The interaction is indispensable for ROS regulation in either the pathogenic outcome, thermal stress, or a combination of both stresses, as observed in the cultivation field. The SlmiR398 knockout plants display feeble O2<sup>∙-</sup> accumulation but enhanced levels of H<sub>2</sub>O<sub>2</sub>, several defense-related genes, metabolites, and vital HSFs and HSPs, which were heightened upon stress. Depletion of SlmiR398, although it renders thermotolerance and resilience to biotrophic pathogens likely due to the augmented hypersensitive response, facilitates necrotrophy. Thus, SlmiR398-mediated ROS regulation seemingly works at the interface of abiotic and biotic stress response for a sustainable reaction of tomato plants.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"35"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01563-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An imbalance between ROS production and scavenging during stress results in oxidative bursts, which causes cellular damage. miR398 is a regulator of ROS scavenging since it targets crucial Cu/Zn superoxide dismutases (CSDs). Established functional studies aligned miR398 with plants' heat and heavy metal stress fitness. However, a knowledge gap in the dynamics of miR398-CSD interaction for redox regulation during pathogenic development impeded their use in crop improvement programmes. We use tomato, Solanum lycopersicum, plants, and necrotrophic and biotrophic pathogens to show that a complex transcriptional and post-transcriptional regulatory circuit maintains SlmiR398 and its target SlCSD genes' level. The interaction is indispensable for ROS regulation in either the pathogenic outcome, thermal stress, or a combination of both stresses, as observed in the cultivation field. The SlmiR398 knockout plants display feeble O2∙- accumulation but enhanced levels of H2O2, several defense-related genes, metabolites, and vital HSFs and HSPs, which were heightened upon stress. Depletion of SlmiR398, although it renders thermotolerance and resilience to biotrophic pathogens likely due to the augmented hypersensitive response, facilitates necrotrophy. Thus, SlmiR398-mediated ROS regulation seemingly works at the interface of abiotic and biotic stress response for a sustainable reaction of tomato plants.

番茄miR398基因敲除破坏应激过程中的ROS动力学,使其具有耐热性,但对坏死性细胞感染敏感。
应激过程中活性氧产生和清除之间的不平衡导致氧化爆发,从而导致细胞损伤。miR398是ROS清除的调节剂,因为它靶向关键的Cu/Zn超氧化物歧化酶(CSDs)。已建立的功能研究将miR398与植物的高温和重金属胁迫适应性联系起来。然而,在致病发育过程中miR398-CSD相互作用对氧化还原调控的动力学方面的知识差距阻碍了它们在作物改良计划中的应用。我们使用番茄、茄、植物和坏死性和生物营养性病原体来证明,一个复杂的转录和转录后调控回路维持了SlmiR398及其靶SlCSD基因的水平。正如在栽培领域观察到的那样,无论是在致病结果、热胁迫还是两种胁迫的组合中,这种相互作用对于ROS调控都是必不可少的。SlmiR398基因敲除植株表现出微弱的O2∙-积累,但H2O2、几种防御相关基因、代谢物和重要hsf和HSPs水平升高,这些水平在胁迫下升高。虽然SlmiR398的缺失可能由于增强的超敏反应而使其具有耐热性和对生物营养性病原体的恢复能力,但它促进了坏死。因此,slmir398介导的ROS调控似乎在非生物和生物胁迫反应的界面上起作用,以实现番茄植株的可持续反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信