Enhancing wheat resilience: biotechnological advances in combating heat stress and environmental challenges.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Muhammad Arif, Muhammad Haroon, Ayesha Fazal Nawaz, Hina Abbas, Ruhong Xu, Luhua Li
{"title":"Enhancing wheat resilience: biotechnological advances in combating heat stress and environmental challenges.","authors":"Muhammad Arif, Muhammad Haroon, Ayesha Fazal Nawaz, Hina Abbas, Ruhong Xu, Luhua Li","doi":"10.1007/s11103-025-01569-7","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change, with its increasing temperatures, is significantly disrupting global agricultural systems, and wheat, a key cereal crop faces severe challenges. Heat stress has emerged as a critical threat, accelerating wheat growth, leading to premature maturation, reduced grain filling, and ultimately lower yields. The situation is exacerbated by more frequent and intense heat waves, particularly in regions already struggling with water scarcity. Maintaining the delicate balance of temperature and water necessary for optimal wheat production is becoming challenging, posing a serious risk to global food security. Therefore, there is an urgent need to develop adaptive strategies with innovations in breeding and transgenic technologies crucial to improving wheat resilience to environmental stresses, especially to combat the growing impacts of heat stress. Modern tools like CRISPR/Cas9, Transcription Activator-Like Effector Nucleases, and Zinc Finger Nucleases have been instrumental in developing wheat varieties with improved traits. However, the future of wheat cultivation requires more than just resistance to a single stressor. As climate change intensifies, there is an urgent need for wheat varieties that can withstand multiple stresses, including heat, drought, and pests. Developing these multi-stress-tolerant cultivars is crucial for ensuring food security in a rapidly changing climate.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"41"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01569-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change, with its increasing temperatures, is significantly disrupting global agricultural systems, and wheat, a key cereal crop faces severe challenges. Heat stress has emerged as a critical threat, accelerating wheat growth, leading to premature maturation, reduced grain filling, and ultimately lower yields. The situation is exacerbated by more frequent and intense heat waves, particularly in regions already struggling with water scarcity. Maintaining the delicate balance of temperature and water necessary for optimal wheat production is becoming challenging, posing a serious risk to global food security. Therefore, there is an urgent need to develop adaptive strategies with innovations in breeding and transgenic technologies crucial to improving wheat resilience to environmental stresses, especially to combat the growing impacts of heat stress. Modern tools like CRISPR/Cas9, Transcription Activator-Like Effector Nucleases, and Zinc Finger Nucleases have been instrumental in developing wheat varieties with improved traits. However, the future of wheat cultivation requires more than just resistance to a single stressor. As climate change intensifies, there is an urgent need for wheat varieties that can withstand multiple stresses, including heat, drought, and pests. Developing these multi-stress-tolerant cultivars is crucial for ensuring food security in a rapidly changing climate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信