Pharmaceutical Development and Technology最新文献

筛选
英文 中文
Preparation of diltiazem HCl-modified release formulation using cation-exchange resin as a single excipient. 以阳离子交换树脂为单赋形剂制备盐酸地尔硫卓改性缓释制剂。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-03-01 Epub Date: 2025-03-03 DOI: 10.1080/10837450.2025.2474092
Khouloud A Alkhamis, Suhair S Al-Nimry
{"title":"Preparation of diltiazem HCl-modified release formulation using cation-exchange resin as a single excipient.","authors":"Khouloud A Alkhamis, Suhair S Al-Nimry","doi":"10.1080/10837450.2025.2474092","DOIUrl":"10.1080/10837450.2025.2474092","url":null,"abstract":"<p><strong>Objective: </strong>Modified released formulations of diltiazem were previously prepared using cation-exchange resins. However, multiple excipients were required to achieve the appropriate release rate. It was of interest to prepare a modified release dosage form of diltiazem using drug-resin complex alone.</p><p><strong>Methods: </strong>Adsorption experiments conducted using a rotating bottle apparatus. The procedure involved adding the resin to the bottles, followed by appropriate amount of drug solution. The bottles were rotated until equilibrium was reached and the concentrations were analyzed using a reversed phase HPLC method, which effectively separated the compound from its degradation product. Release studies were conducted using a USP dissolution apparatus 2 with phosphate buffer as the dissolution medium.</p><p><strong>Key findings: </strong>Diltiazem was unstable inside the resin when the H<sup>+</sup> form was used. It became stable when the H<sup>+</sup> was displaced with Na<sup>+</sup>. Langmuir-like equation was applied to the adsorption isotherms. The equation parameters were influenced by the resin's cross-linking and particle size. Maximum drug release is related to sample volume. Positive linear relationship was obtained between initial release rate and extent of uptake.</p><p><strong>Conclusion: </strong>This study successfully demonstrates that Dowex® 50WX8 (Na<sup>+</sup> form) can be used as a single excipient in diltiazem formulations, providing both chemical stability and sustained release without requiring additional polymer coatings.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"306-313"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into manufacturing of bespoke combination drug products containing carvedilol and simvastatin by fused deposition modeling. 通过融合沉积模型洞察含有卡维地洛和辛伐他汀的定制联合药物产品的制造。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-03-01 Epub Date: 2025-03-14 DOI: 10.1080/10837450.2025.2475965
Lucas Korsgaard Andreasen, Emilie Victoria Slot Andreasen, Wuzhong He, Jukka Rantanen, Natalja Genina
{"title":"Insight into manufacturing of bespoke combination drug products containing carvedilol and simvastatin by fused deposition modeling.","authors":"Lucas Korsgaard Andreasen, Emilie Victoria Slot Andreasen, Wuzhong He, Jukka Rantanen, Natalja Genina","doi":"10.1080/10837450.2025.2475965","DOIUrl":"10.1080/10837450.2025.2475965","url":null,"abstract":"<p><p>The goal of this study was to explore the fabrication of a combination drug product containing two poorly soluble active pharmaceutical ingredients (APIs), carvedilol (CAR) and simvastatin (SIM), in therapeutically relevant doses (25 mg of each API) with a distinct, easily distinguishable shape. Fused deposition modeling, combined with hot-melt extrusion (HME), was used to produce hollow heart-shaped dual-loaded tablets in which the two APIs were spatially separated with an intermediate API-free layer. Water-soluble hydroxypropyl methylcellulose of varying molecular weights was used as the primary polymer for HME. The incorporation of a processability-improving polymer, such as polycaprolactone, was necessary to facilitate the printing of these delicate geometries and lower the printing temperature. The 3D-printed tablets contained the therapeutic doses of both APIs; however, further optimization of manufacturing processes is required to improve drug content uniformity. The drug release from the printed tablets was sustained, with complete release of CAR observed after 24 h, demonstrating the suitability of the designed drug products for oral delivery.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"314-322"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of immediate release 3D printed tablets using hot melt extruded amorphous cyclosporine a filament. 热熔挤压非晶态环孢素A长丝3D打印片剂的制备与表征。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-03-01 Epub Date: 2025-03-06 DOI: 10.1080/10837450.2025.2472893
Jin-Hyuk Jeong, Chang-Soo Han, Ji-Hyun Kang, Kwang-Hwi Yoo, Woong-Young Jung, Yun-Sang Park, Dong-Wook Kim, Chun-Woong Park
{"title":"Preparation and characterization of immediate release 3D printed tablets using hot melt extruded amorphous cyclosporine a filament.","authors":"Jin-Hyuk Jeong, Chang-Soo Han, Ji-Hyun Kang, Kwang-Hwi Yoo, Woong-Young Jung, Yun-Sang Park, Dong-Wook Kim, Chun-Woong Park","doi":"10.1080/10837450.2025.2472893","DOIUrl":"10.1080/10837450.2025.2472893","url":null,"abstract":"<p><p>3D printing technology is gaining attention as a next-generation approach to drug formulation. Among 3D printing techniques, fused deposition modeling is cost-effective but depends heavily on suitable filaments. Hot melt extrusion enables filament production by incorporating poorly water-soluble drugs like cyclosporine A into polymers to form solid dispersions. However, achieving immediate release formulations with 3D printing remains challenging due to issues such as inadequate tablet disintegration or drug entrapment within the polymer matrix. This study aimed to develop and evaluate immediate release 3D-printed cyclosporine A tablets using HME filaments. Three parameters were modified in the 3D printing process: varying fill speeds, infill densities, and channel lengths. Filaments composed of Kollidon<sup>®</sup> VA 64 and HPC-SSL (1:1) were used to print tablets. Solid-state analysis confirmed cyclosporine A 's amorphous state and partial crystallinity in Xylisorb<sup>®</sup> 300. Dissolution studies revealed that lower infill densities (30%) and fewer walls enhanced drug release by increasing internal void space and reducing hardness. Conversely, greater tablet height (channel length) delayed dissolution. These findings emphasize the critical role of geometric design in drug release, showcasing the potential of 3D printing to create personalized dosage forms tailored to patient needs by optimizing structural parameters.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"295-305"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saccharomyces cerevisiae-derived vesicles loaded with dextromethorphan as a candidate for the management of neuroinflammation related to Alzheimer's disease. 装载右美沙芬的酿酒酵母衍生囊泡作为阿尔茨海默病相关神经炎症治疗的候选药物
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-03-01 Epub Date: 2025-03-04 DOI: 10.1080/10837450.2025.2470351
Parastoo Valizadeh, Negin Mozafari, Hajar Ashrafi, Reza Heidari, Negar Azarpira, Amir Azadi
{"title":"<i>Saccharomyces cerevisiae</i>-derived vesicles loaded with dextromethorphan as a candidate for the management of neuroinflammation related to Alzheimer's disease.","authors":"Parastoo Valizadeh, Negin Mozafari, Hajar Ashrafi, Reza Heidari, Negar Azarpira, Amir Azadi","doi":"10.1080/10837450.2025.2470351","DOIUrl":"10.1080/10837450.2025.2470351","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease that is associated with neuroinflammation. Dextromethorphan (DXM) exerts neuroprotective effects in many central nervous system injuries and neurodegenerative diseases. The cell wall of <i>Saccharomyces cerevisiae</i> is a cell-based drug delivery system that can be a suitable candidate for targeted drug delivery to the site of inflammation. In this study, nanoparticles (NPs) were prepared from <i>Saccharomyces cerevisiae</i> cell walls, coated with polysorbate-80, and loaded with DXM. NPs had favorable hemolytic behavior with a particle size distribution of 187.25 ± 73.37 nm and a zeta potential of +4.3 mV. Pathological examination in a mouse model of neuroinflammation showed that NPs had the ability to reduce brain inflammation and the adverse effects of DXM.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"259-267"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-acting release of fluocinolone acetonide microspheres using electrospray technology for noninfectious uveitis therapy. 电喷雾技术治疗醋酸氟西诺酮微球非感染性葡萄膜炎的长效释放研究
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-02-01 Epub Date: 2025-02-10 DOI: 10.1080/10837450.2025.2462998
Jiayu Xie, Ke Li, Lusi Chen, Huiying Zhong, Tao Xiao, Lihua Chen, Haibing He, Hongfei Liu, Guoqing Zhang
{"title":"Long-acting release of fluocinolone acetonide microspheres using electrospray technology for noninfectious uveitis therapy.","authors":"Jiayu Xie, Ke Li, Lusi Chen, Huiying Zhong, Tao Xiao, Lihua Chen, Haibing He, Hongfei Liu, Guoqing Zhang","doi":"10.1080/10837450.2025.2462998","DOIUrl":"10.1080/10837450.2025.2462998","url":null,"abstract":"<p><p>Intravitreous long-acting drug delivery system offers an excellent alternative to multiple injections for the treatment of noninfectious uveitis (NIU). However, the adverse effects of non-biodegradable intravitreal implants of fluocinolone acetonide (FA), such as postoperative hypotony and secondary injury during removal of the implant matrix, are frequent occurrence to affect patient's compliance. Herein, biodegradable poly (lactic-co-glycolic acid) (PLGA)-based microspheres (MS) containing fluocinolone acetonide (FA@MS) were prepared using an optimized electrospray technology with a voltage of 10.07 kV and the receiving distance of 9.87 cm. The obtained FA@MS with the average particle size of 2.25 μm possessed the high encapsulation efficiency (94.85%) and drug content (9.48%). <i>In vitro</i> release demonstrated that FA@MS exhibited sustained release for 30 days, and the release characteristic of FA@MS conformed to the Weibull model. <i>In vivo</i> study in a rabbit NIU model indicated that FA@MS continuously released the drug for at least 28 days in vitreum and progressively decreased inflammation of NIU. Furthermore, the intraocular pressure of rabbits treated with blank MS and FA@MS remained the normal level for 28 days, which demonstrated the favorable biosafety of FA@MS. In conclusion, long-acting release of FA@MS provides a promising formulation for NIU treatment. HIGHLIGHTSA biodegradable FA@MS was prepared using the modified electrospray technology for intravitreal administration.FA@MS exhibited the sustained release characteristics for 30 days in the medium of PBS (pH 7.4) with 0.2% Tween 80.The pharmacodynamics indicated that FA@MS could be continuously released for at least 28 days in vitreum to treat NIU.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"210-219"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation development and evaluation of push-pull osmotic pump bi-layered tablets for phencynonate HCl in the treatment of motion sickness. 推拉式渗透泵双层盐酸苯己酸酯片治疗晕动病的配方研制及评价。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-02-01 Epub Date: 2025-02-12 DOI: 10.1080/10837450.2025.2465548
Si-Rui Liu, Wen Lin, Xiang-Yang Xie, Yuan Zeng
{"title":"Formulation development and evaluation of push-pull osmotic pump bi-layered tablets for phencynonate HCl in the treatment of motion sickness.","authors":"Si-Rui Liu, Wen Lin, Xiang-Yang Xie, Yuan Zeng","doi":"10.1080/10837450.2025.2465548","DOIUrl":"10.1080/10837450.2025.2465548","url":null,"abstract":"<p><p>The aim of this study was to develop and evaluate an extended-release (ER) push-pull osmotic pump (PPOP) tablet for phencynonate HCl (PCN), which could release the drug at zero-order profile for a duration of 24 h. The core tablets were designed as bi-layered, primarily composed of sodium chloride and polyethylene oxide (PEO). The central composite design (CCD) within a response surface methodology (RSM) was used to optimize the formulation. An optimized PCN-PPOP tablet formulation was achieved with the following values for key factors: 10 mg NaCl, 70 mg PEO, and 13.56% coating membrane weight gain. It revealed that this formulation could release PCN <i>in vitro</i> at a zero-order manner for 18 h. The <i>in vivo</i> release property of the PCN-PPOP tablet was assessed and contrasted with that of immediate-release (IR) tablet following a single oral administration to beagle dogs. The pharmacokinetic data indicated that the PPOP tablet achieved a sustained <i>in vivo</i> release of PCN, as evidenced by a longer T<sub>max</sub> (7.17 ± 1.83 h) and mean residence time (11.57 ± 1.12 h). This work demonstrated that PCN-PPOP tablet could be designed for oral administration to provide a long-term pharmacological intervention for motion sickness.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"220-232"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate enhances the antitumor effect of quercetin liposomes in triple-negative breast cancer. ngr -聚(2-乙基-2-恶唑啉)-胆固醇酯甲酯增强槲皮素脂质体对三阴性乳腺癌的抗肿瘤作用。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-02-01 Epub Date: 2025-01-18 DOI: 10.1080/10837450.2025.2450434
Chengcheng Zhao, Jian Qin, Dingyu Zhang, Xue Li, Ning Yang, Tingyu Gao, Junliang Song, Yule Song, Shouzhen Huang, Huan Xu
{"title":"NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate enhances the antitumor effect of quercetin liposomes in triple-negative breast cancer.","authors":"Chengcheng Zhao, Jian Qin, Dingyu Zhang, Xue Li, Ning Yang, Tingyu Gao, Junliang Song, Yule Song, Shouzhen Huang, Huan Xu","doi":"10.1080/10837450.2025.2450434","DOIUrl":"10.1080/10837450.2025.2450434","url":null,"abstract":"<p><p>In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (<sup>1</sup>H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.28 times and 2.43 times that of the QUE Solution and QUE-L groups, respectively. The release amount of NPC-QUE-L in an acidic environment was significantly higher than in physiological pH value. The order of the tumor cell inhibition rate in different pH environments was NPC-QUE-L > PC-QUE-L > QUE-L. In addition, the cellular uptake of NPC-modified liposomes was higher than that of PC-modified and unmodified liposomes, indicating that NPC had good pH-sensitivity and targeting. In the triple-negative breast cancer (TNBC) model, the relative tumor proliferation rate of NPC-QUE-L is about 73%, which is better than that of the QUE solution group. Western blot results show that NPC-QUE-L can effectively reduce the expression of α-smooth actin and transforming growth factor-β1 in tumor tissues, and improve the degree of tumor fibrosis. In this study, NPC could endow QUE liposomes with good stability, pH-sensitivity, and targeting, which provides a reference for improving the solubility and targeting of poorly soluble natural drug components.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"137-149"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and clinical evaluation of hyaluronic acid nanogel in treatment of tear trough: nano-flipping from injectable fillers to topical nanofillers. 透明质酸纳米凝胶治疗泪沟的配方及临床评价:从注射填充剂到外用纳米填充剂的纳米翻转。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-02-01 DOI: 10.1080/10837450.2025.2459908
Yosra S R Elnaggar, Abdelrahaman M M Othman, Ashraf Farahat, Marwa Essawy, Shaimaa Ismail Omar
{"title":"Formulation and clinical evaluation of hyaluronic acid nanogel in treatment of tear trough: nano-flipping from injectable fillers to topical nanofillers.","authors":"Yosra S R Elnaggar, Abdelrahaman M M Othman, Ashraf Farahat, Marwa Essawy, Shaimaa Ismail Omar","doi":"10.1080/10837450.2025.2459908","DOIUrl":"10.1080/10837450.2025.2459908","url":null,"abstract":"<p><p>Tear trough deformity (TTD) is a significant cosmetic concern, with current treatments relying primarily on invasive injectable fillers, which are costly and carry risks of complications. Despite the widespread use of hyaluronic acid (HA) in cosmetic applications, its poor dermal permeation has limited the development of effective topical fillers for TTD. This study aim to develop and evaluate a novel hyaluronic acid nanogel (nanofiller, NF) as a non-invasive topical filler for TTD. The hyaluronic acid NF was formulated and characterized for size, zeta potential, and skin permeation using the Franz diffusion method. The nanofiller demonstrated a particle size of 213.28 ± 4.15 nm and a zeta potential of -22.1 ± 1.07 mV, with a tenfold superior permeation compared to conventional HA gel. Thirty adult female patients aged 21-50 years with TTD were enrolled in a clinical trial and randomly assigned to receive either the NF or a conventional HA gel (control). Participants were randomly assigned to receive either the NF or a conventional HA gel (control). Clinical evaluation included subjective assessments and objective photomorphometric measurements of TTD parameters such as skin roughness (fine lines), indentation index, mean density, and percentage of the affected area. The NF group showed a significant improvement in TTD parameters, including up to a 40-fold reduction in skin roughness and indentation index, with 100% patient satisfaction and no adverse effects, compared to the control group. \"To conclude; this study demonstrates the efficacy and safety of the HA nanofiller as the first effective topical treatment for TTD, offering a non-invasive alternative to injectable fillers.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"150-159"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of PLGA-SPC3 functionalized gefitinib mesoporous silica nano-scaffolds for breast cancer targeting: biodistribution and cytotoxicity analysis. PLGA-SPC3功能化吉非替尼介孔二氧化硅纳米支架的开发:生物分布和细胞毒性分析。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-02-01 Epub Date: 2025-02-13 DOI: 10.1080/10837450.2025.2460732
Ravi Kumar Sah, Sajeev Kumar B
{"title":"Development of PLGA-SPC3 functionalized gefitinib mesoporous silica nano-scaffolds for breast cancer targeting: biodistribution and cytotoxicity analysis.","authors":"Ravi Kumar Sah, Sajeev Kumar B","doi":"10.1080/10837450.2025.2460732","DOIUrl":"10.1080/10837450.2025.2460732","url":null,"abstract":"<p><p>The exploration of novel carriers for cancer treatments is on the rise, as drugs are often hindered by ineffective delivery. In the present study, Mesoporous silica nano scaffolds were developed by a novel heat assisted hydrolysis (HAH) technique, and were functionalized using PLGA. These carriers were further loaded with nanosized Gefitinib (GTB). The surface properties of MSNs (GTB-PEG-PLGA-MSN) were enhanced using 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (SPC3). The MSNs were characterized for pore volume, particle size, zeta potential (ZP), surface area, entrapment efficiency (%EE), and drug content. The <i>in vitro</i> drug release kinetics, cytotoxicity analysis, and <i>in vivo</i> biodistribution studies were performed in optimized MSN using Albino Wistar rats. The result shows an increase in surface area, pore volume, %EE, and drug loading in MSN. <i>In vitro</i> cytotoxicity of optimized F5-GTB-PEG-PLGA-SPC3-MSN demonstrated a higher antitumor activity (43.84 ± 0.63%, <i>p <</i> 0.05) in comparison to free drug. A higher GTB was detected in the liver (29,415 ± 126 ng) indicating significant biodistribution (<i>p</i> > 0.05). The <i>in vitro</i> studies in the MCF-7 cell line signify an increase in cell viability demonstrating its efficacy in breast cancer. Optimized F5-GTB-PEG-PLGA-SPC3-MSN offers improved cellular uptake, biodistribution, and higher antitumor suppression with less toxicity. To conclude, the HAH technique produced stable MSNs, and PLGA-SPC3 functionalized MSN nano scaffolds could be an ideal carrier for cancer drug delivery.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"160-176"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced dissolution and antibacterial potential of cinacalcet hydrochloride via ternary solid dispersions. 三元固体分散体增强盐酸那卡塞的溶出度及抑菌潜能。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-02-01 Epub Date: 2025-02-06 DOI: 10.1080/10837450.2025.2462946
Aya E Radwan, Ebtessam A Essa, Engy Elekhnawy, Amal A Sultan, Shimaa M Ashmawy
{"title":"Enhanced dissolution and antibacterial potential of cinacalcet hydrochloride <i>via</i> ternary solid dispersions.","authors":"Aya E Radwan, Ebtessam A Essa, Engy Elekhnawy, Amal A Sultan, Shimaa M Ashmawy","doi":"10.1080/10837450.2025.2462946","DOIUrl":"10.1080/10837450.2025.2462946","url":null,"abstract":"<p><p>Cinacalcet hydrochloride (HCl), a calcium-sensing receptor agonist used to treat hyperparathyroidism, suffers from poor solubility, reducing its bioavailability. Recently, cinacalcet HCl has been probed for repurposing as antibacterial agent. This work investigates cinacalcet HCl's potential as an antibacterial agent and provides a formulation to improve the drug dissolution. Solid dispersion formulations using Poloxamer 407, with and without Soluplus<sup>®</sup>, were prepared <i>via</i> solvent evaporation and hot melt congealing methods. The resulting formulations were analyzed using differential scanning calorimetry, FTIR spectroscopy, X-ray powder diffraction, and dissolution studies. These formulations significantly enhanced cinacalcet HCl dissolution compared to the unprocessed form, achieving up to a 15-fold increase in Q5 (percent of cinacalcet HCl dissolved after 5 min). The dissolution efficiency rose from 28% for the pure drug to 94.8 and 87.8% for formulations F6 and F7, respectively. Microbiological evaluations confirmed the antibacterial effect of cinacalcet HCl, which was notably increased in the Poloxamer 407 and Soluplus<sup>®</sup> hybrid formulation (F7) with a MIC of 64-128 µg/ml. Antibiofilm activity was also observed, with qRT-PCR indicating downregulation of biofilm genes (icaA, icaD, and fnbA). This study introduces a cinacalcet HCl formulation prepared using a scalable, green approach, demonstrating significant potential for antimicrobial applications.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"195-209"},"PeriodicalIF":2.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信