{"title":"ngr -聚(2-乙基-2-恶唑啉)-胆固醇酯甲酯增强槲皮素脂质体对三阴性乳腺癌的抗肿瘤作用。","authors":"Chengcheng Zhao, Jian Qin, Dingyu Zhang, Xue Li, Ning Yang, Tingyu Gao, Junliang Song, Yule Song, Shouzhen Huang, Huan Xu","doi":"10.1080/10837450.2025.2450434","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (<sup>1</sup>H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.28 times and 2.43 times that of the QUE Solution and QUE-L groups, respectively. The release amount of NPC-QUE-L in an acidic environment was significantly higher than in physiological pH value. The order of the tumor cell inhibition rate in different pH environments was NPC-QUE-L > PC-QUE-L > QUE-L. In addition, the cellular uptake of NPC-modified liposomes was higher than that of PC-modified and unmodified liposomes, indicating that NPC had good pH-sensitivity and targeting. In the triple-negative breast cancer (TNBC) model, the relative tumor proliferation rate of NPC-QUE-L is about 73%, which is better than that of the QUE solution group. Western blot results show that NPC-QUE-L can effectively reduce the expression of α-smooth actin and transforming growth factor-β1 in tumor tissues, and improve the degree of tumor fibrosis. In this study, NPC could endow QUE liposomes with good stability, pH-sensitivity, and targeting, which provides a reference for improving the solubility and targeting of poorly soluble natural drug components.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate enhances the antitumor effect of quercetin liposomes in triple-negative breast cancer.\",\"authors\":\"Chengcheng Zhao, Jian Qin, Dingyu Zhang, Xue Li, Ning Yang, Tingyu Gao, Junliang Song, Yule Song, Shouzhen Huang, Huan Xu\",\"doi\":\"10.1080/10837450.2025.2450434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (<sup>1</sup>H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.28 times and 2.43 times that of the QUE Solution and QUE-L groups, respectively. The release amount of NPC-QUE-L in an acidic environment was significantly higher than in physiological pH value. The order of the tumor cell inhibition rate in different pH environments was NPC-QUE-L > PC-QUE-L > QUE-L. In addition, the cellular uptake of NPC-modified liposomes was higher than that of PC-modified and unmodified liposomes, indicating that NPC had good pH-sensitivity and targeting. In the triple-negative breast cancer (TNBC) model, the relative tumor proliferation rate of NPC-QUE-L is about 73%, which is better than that of the QUE solution group. Western blot results show that NPC-QUE-L can effectively reduce the expression of α-smooth actin and transforming growth factor-β1 in tumor tissues, and improve the degree of tumor fibrosis. In this study, NPC could endow QUE liposomes with good stability, pH-sensitivity, and targeting, which provides a reference for improving the solubility and targeting of poorly soluble natural drug components.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2450434\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2450434","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
本文构建了ph敏感靶向功能材料ngr -聚(2-乙基-2-恶唑啉)-胆甾醇酯甲酯(NPC)修饰槲皮素(QUE)脂质体(NPC-QUE- l)。通过红外光谱(IR)和核磁共振氢谱(1H-NMR)证实了NPC的结构。药代动力学结果显示,NPC-QUE-L组血浆中QUE的蓄积量分别是QUE溶液和QUE- l组的1.28倍和2.43倍。NPC-QUE-L在酸性环境中的释放量显著高于生理pH值。不同pH环境下肿瘤细胞抑制率的大小顺序为npc - queue - l > pc - queue - l > queue - l。此外,NPC修饰脂质体的细胞摄取高于pc修饰和未修饰的脂质体,表明NPC具有良好的ph敏感性和靶向性。在三阴性乳腺癌(TNBC)模型中,NPC-QUE-L的相对肿瘤增殖率约为73%,优于QUE溶液组。Western blot结果显示,NPC-QUE-L能有效降低肿瘤组织中α-光滑肌动蛋白和转化生长因子-β1的表达,改善肿瘤纤维化程度。本研究中,NPC可赋予QUE脂质体良好的稳定性、ph敏感性和靶向性,为提高难溶性天然药物成分的溶解度和靶向性提供参考。
NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate enhances the antitumor effect of quercetin liposomes in triple-negative breast cancer.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (1H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.28 times and 2.43 times that of the QUE Solution and QUE-L groups, respectively. The release amount of NPC-QUE-L in an acidic environment was significantly higher than in physiological pH value. The order of the tumor cell inhibition rate in different pH environments was NPC-QUE-L > PC-QUE-L > QUE-L. In addition, the cellular uptake of NPC-modified liposomes was higher than that of PC-modified and unmodified liposomes, indicating that NPC had good pH-sensitivity and targeting. In the triple-negative breast cancer (TNBC) model, the relative tumor proliferation rate of NPC-QUE-L is about 73%, which is better than that of the QUE solution group. Western blot results show that NPC-QUE-L can effectively reduce the expression of α-smooth actin and transforming growth factor-β1 in tumor tissues, and improve the degree of tumor fibrosis. In this study, NPC could endow QUE liposomes with good stability, pH-sensitivity, and targeting, which provides a reference for improving the solubility and targeting of poorly soluble natural drug components.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.