Eva A Kuznetsova, Guzalia F Zakirjanova, Andrei N Tsentsevitsky, Alexey M Petrov
{"title":"25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.","authors":"Eva A Kuznetsova, Guzalia F Zakirjanova, Andrei N Tsentsevitsky, Alexey M Petrov","doi":"10.1007/s00424-024-03058-0","DOIUrl":"10.1007/s00424-024-03058-0","url":null,"abstract":"<p><p>Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability. Here, using fluorescent dyes, the time course of endocytosis induced by intense activity of the phrenic nerve was studied at the mouse diaphragm neuromuscular junction. It was found that a significant portion of endocytic events occurs after the end of tetanic stimulation. Pitstop 2, clathrin inhibitor, and more profoundly dynole 34-2, dynamin antagonist, suppressed endocytic FM1-43 dye uptake both during and after tetanus. Furthermore, synaptic vesicles formed in the presence of the endocytic blockers released FM-dye during subsequent evoked exocytosis at a lower rate. 25-Hydroxycholesterol (25HC) is an oxysterol, ubiquitously synthetized from excessive cholesterol. In addition, its production greatly increases by activated macrophages. 25HC accelerated FM-dye endocytosis and its sequential evoked exocytosis, and dynole (but not pitstop) prevented 25HC-mediated enhancement of endocytic FM-dye uptake. The positive effects of 25HC were interfered with chelation of cytosolic Ca<sup>2+</sup> with a slow Ca<sup>2+</sup> buffer EGTA-AM, Ca<sup>2+</sup> antagonist TMB8, and sphingomyelin-hydrolyzing enzyme. In contrast to amphiphilic FM1-43 dye capture, 25HC reduced uptake of hydrophilic high molecular weight markers (labeled dextrans and toxin), which utilize bulk endocytosis to enter into nerve terminals. Thus, synaptic vesicle endocytosis had a relatively slow kinetics following the tetanic activity and can be accelerated by 25HC. The positive effect of 25HC on endocytosis engages a dynamin-dependent pathway, interconnected with cytoplasmic Ca<sup>2+</sup> and sphingomyelin integrity.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"421-439"},"PeriodicalIF":2.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Scotti Gerber, Eva Maria Pastor Arroyo, Johanne Pastor, Miguel Correia, Stefan Rudloff, Orson W Moe, Daniela Egli-Spichtig, Nilufar Mohebbi, Carsten A Wagner
{"title":"Controlled dietary phosphate loading in healthy young men elevates plasma phosphate and FGF23 levels.","authors":"Jennifer Scotti Gerber, Eva Maria Pastor Arroyo, Johanne Pastor, Miguel Correia, Stefan Rudloff, Orson W Moe, Daniela Egli-Spichtig, Nilufar Mohebbi, Carsten A Wagner","doi":"10.1007/s00424-024-03046-4","DOIUrl":"10.1007/s00424-024-03046-4","url":null,"abstract":"<p><p>Increased dietary inorganic phosphate (P<sub>i</sub>) intake stimulates renal P<sub>i</sub> excretion, in part, by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) or dopamine. High dietary P<sub>i</sub> may also stimulate sympathetic outflow. Rodent studies provided evidence for these regulatory loops, while controlled experiments in healthy humans examined periods of either a few hours or several weeks, and often varied dietary calcium intake. The effects of controlled, isolated changes in dietary P<sub>i</sub> intake over shorter periods are unknown. We studied the effects of a low or high P<sub>i</sub> diet on parameters of mineral metabolism in 10 healthy young men. Participants received a standardized diet (1000 mg phosphorus equivalent/day) supplemented with either a phosphate binder (low P<sub>i</sub> diet) or phosphate capsules (750 mg phosphorus, high P<sub>i</sub> diet) in a randomized cross-over trial for 5 days with a 7-day washout between diets. High P<sub>i</sub> intake increased plasma P<sub>i</sub> levels and 24-h excretion and decreased urinary calcium excretion. High P<sub>i</sub> intake increased intact FGF23 (iFGF23) and suppressed plasma Klotho without affecting cFGF23, PTH, calcidiol, calcitriol, Fetuin-A, dopamine, epinephrine, norepinephrine, metanephrine, or aldosterone. Higher iFGF23 correlated with lower calcitriol and higher PTH. These data support a role for iFGF23 in increasing renal P<sub>i</sub> excretion and reducing calcitriol in healthy young men during steady-state high dietary P<sub>i</sub> intake. High dietary P<sub>i</sub> intake elevated blood P<sub>i</sub> levels in healthy young subjects with normal renal function and may therefore be a health risk, as higher serum P<sub>i</sub> levels are associated with cardiovascular risk in the general population.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"495-508"},"PeriodicalIF":2.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142731753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of tDCS on glutamatergic pathways in epilepsy: neuroprotective and therapeutic potential.","authors":"Filiz Demirdogen, Guven Akcay","doi":"10.1007/s00424-024-03049-1","DOIUrl":"10.1007/s00424-024-03049-1","url":null,"abstract":"<p><p>Epilepsy is a chronic neurological disease characterized by recurrent seizures caused by abnormal electrical activity in the brain. The aim of our study was to investigate the effect of tDCS on oxidative stress, Ca<sup>2+</sup>, glutamate, GABA, AMPAR1, and NMDAR1 levels in kindling-induced epilepsy model. Behavioral tests evaluated motor and cognitive functions, while assessing oxidative stress, Ca<sup>2+</sup>, glutamate, GABA, AMPAR1, and NMDAR1 levels in hippocampal tissue. tDCS stimulation therapy demonstrates a neuroprotective effect on motor and cognitive function postepilepsy. Our study reveals an increase in TOC, Ca<sup>2+</sup>, glutamate, GABA, AMPAR1, and NMDAR1 levels and a decline in total antioxidant capacity (TAC) following PTZ-induced seizures. However, tDCS treatment led to a significant decrease of Ca<sup>2+</sup>, total oxidant capacity (TOC), glutamate, GABA, AMPAR1, and NMDAR1 levels in the epilepsy cohorts, while simultaneously causing a spike in TAC levels. The study's results showed that tDCS treatment could have a therapeutic effect on oxidative stress, Ca<sup>2+</sup>, TOC, glutamate, GABA, AMPAR1, NMDAR1, and TAC in both acute and chronic kindling epilepsy models.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"341-348"},"PeriodicalIF":2.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The lateral habenula regulates stress-related respiratory responses via the monoaminergic system.","authors":"Riko Mizukami, Masayuki Matsumoto, Tadachika Koganezawa","doi":"10.1007/s00424-024-03043-7","DOIUrl":"10.1007/s00424-024-03043-7","url":null,"abstract":"<p><p>Psychologic stress induces behavioral and autonomic responses such as acceleration of respiration. The lateral habenula (LHb) is noted to be involved in stress-induced behavioral responses. However, its involvement in stress-induced respiratory responses is unknown. In this study, we aimed to analyze whether and how the LHb regulates respiration. Electrical stimulation of the LHb of anesthetized Wistar male rats increased respiratory frequency and minute ventilation, calculated by respiratory frequency × thoracic movement amplitude. Systemic administration of a dopaminergic receptor antagonist, clozapine, suppressed the LHb-induced respiratory responses. On the other hand, administration of a serotonergic receptor antagonist, methysergide, significantly accelerated the LHb-induced increase in respiratory frequency, together with suppressing the thoracic movement amplitude. To clarify the source of dopaminergic modulation, we inhibited the ventral tegmental area (VTA), which contains dopaminergic neurons and receives inputs from the LHb, by administering microinjections of a GABA<sub>A</sub> agonist, muscimol. The bilateral inhibition of the VTA almost abolished the LHb-induced respiratory responses. These results suggest that LHb activation causes respiration acceleration, mainly mediated by dopaminergic neurons in the VTA and suppressively modulated by the serotonergic system. Neural circuits originating in the LHb may be a key modulator for respiration during psychological stress.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"441-452"},"PeriodicalIF":2.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelaziz M Hussein, Ahmed F Abouelnaga, Walaa Obydah, Somaya Saad, Marwa Abass, Asmaa Yehia, Eman M Ibrahim, Ahmed T Ahmed, Osama A Abulseoud
{"title":"Lateral hypothalamic area high-frequency deep brain stimulation rescues memory decline in aged rat: behavioral, molecular, and electrophysiological study.","authors":"Abdelaziz M Hussein, Ahmed F Abouelnaga, Walaa Obydah, Somaya Saad, Marwa Abass, Asmaa Yehia, Eman M Ibrahim, Ahmed T Ahmed, Osama A Abulseoud","doi":"10.1007/s00424-024-03059-z","DOIUrl":"10.1007/s00424-024-03059-z","url":null,"abstract":"<p><p>To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment. Also, in vivo recording of the neuronal firing of the CA1 region in the hippocampus was done. Old rats show significant decline in memories, antioxidant genes (Nrf2 and HO-1), antioxidants (GSH and catalase), Hsp70, BDNF, and synaptophysin with significant increase in MDA in hippocampus (p < 0.05) and DBS for LHA caused a significant improvement in memories in old rats, with significant rise in fast gamma and theta waves in CA1 region in old rats (p < 0.05). This was associated with a significant increase in antioxidants (GSH and CAT), antioxidant genes (Nrf2, HO-1), Hsp70, BDNF, and synaptophysin with significant reduction in MDA in hippocampus (p < 0.05). DBS for LHA ameliorates the age-induced memory decline. This might be due to increase in fast gamma in CA1, attenuation of oxidative stress, upregulation of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin in the hippocampus.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"371-391"},"PeriodicalIF":2.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of physiology via adaptive transcription.","authors":"Thomas Lissek","doi":"10.1007/s00424-024-03037-5","DOIUrl":"10.1007/s00424-024-03037-5","url":null,"abstract":"<p><p>The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"187-199"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zuo Hao Lee, Wong Siew Tung, Kabileshvaran A/L Jana Santhiran, Huma Shahzad, Nelli Giribabu, Naguib Salleh
{"title":"Correction to: Estrogen hindrance escalates inflammation and neurodegeneration in the hippocampal regions of collagen induced arthritis female Sprague-Dawley rats.","authors":"Zuo Hao Lee, Wong Siew Tung, Kabileshvaran A/L Jana Santhiran, Huma Shahzad, Nelli Giribabu, Naguib Salleh","doi":"10.1007/s00424-025-03063-x","DOIUrl":"10.1007/s00424-025-03063-x","url":null,"abstract":"","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"333"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonia Ruiz-Pino, Arianna Goncalves-Ramírez, Margarita Jiménez-Palomares, Beatriz Merino, Manuel Castellano-Muñoz, Jean F Vettorazzi, Alex Rafacho, Laura Marroquí, Ángel Nadal, Paloma Alonso-Magdalena, Germán Perdomo, Irene Cózar-Castellano, Ivan Quesada
{"title":"Hyperglucagonemia and glucagon hypersecretion in early type 2 diabetes result from multifaceted dysregulation of pancreatic mouse α-cells.","authors":"Antonia Ruiz-Pino, Arianna Goncalves-Ramírez, Margarita Jiménez-Palomares, Beatriz Merino, Manuel Castellano-Muñoz, Jean F Vettorazzi, Alex Rafacho, Laura Marroquí, Ángel Nadal, Paloma Alonso-Magdalena, Germán Perdomo, Irene Cózar-Castellano, Ivan Quesada","doi":"10.1007/s00424-024-03045-5","DOIUrl":"10.1007/s00424-024-03045-5","url":null,"abstract":"<p><p>Hyperglucagonemia has been implicated in the pathogenesis of type 2 diabetes (T2D). In contrast to β-cells, studies on the function of the pancreatic α-cell in T2D are scarce. Consequently, the processes underlying hyperglucagonemia and α-cell dysfunction are largely unknown, limiting the appropriate design of specific pharmacological and therapeutic strategies. In the current study, we aimed to analyze the alterations of the pancreatic α-cell and its glucagon responses in diabetic db/db mice at early stages of the disease. In this context of glucose intolerance, hyperinsulinemia, and β-cell dysfunction, hyperglucagonemia was only present at fed conditions and was associated with insulin resistance. Yet, we found that the glucagon-to-insulin ratio in db/db mice did not change with fed or fasted states, further supporting that the metabolic regulation of glucagon release was impaired. Pancreatic β-cell dysfunction in db/db mice was manifested by increased basal secretion from isolated islets along with reduced insulin content. In contrast, α-cells from diabetic animals presented upregulated secretion and islet content of glucagon compared with controls. Electrophysiological analysis of dispersed α-cells revealed that altered secretion was not the result of impaired exocytosis. Instead, we found defective regulation of Ca<sup>2+</sup> signaling by glucose. Besides these functional alterations, we also observed augmented α-cell mass in diabetic mice, which was accompanied by disrupted islet cytoarchitecture as well as increased α-cell size and number, without pieces of evidence of upregulated proliferation. Overall, these findings indicate that hyperglucagonemia in early T2D results from multifaceted α-cell deregulation in mice.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"207-221"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142731788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliana A da Silva, Samuel S P Araújo, Ana Flávia M da Silva, José Guilherme V de Assunção, Pâmela de S Santos, José L Pereira Júnior, Carlos Eduardo S Dos Reis, Liana de M Santana, Regina G Silva, Ariell A de Oliveira, Francisca V S Nunes, Aldeidia P de Oliveira, Damião P de Sousa, Renato Nery Soriano, Luiz G S Branco, Helio C Salgado, João Paulo J Sabino
{"title":"Chronic rose oxide and exercise synergistically modulate cardiovascular and autonomic functions in hypertensive rats.","authors":"Juliana A da Silva, Samuel S P Araújo, Ana Flávia M da Silva, José Guilherme V de Assunção, Pâmela de S Santos, José L Pereira Júnior, Carlos Eduardo S Dos Reis, Liana de M Santana, Regina G Silva, Ariell A de Oliveira, Francisca V S Nunes, Aldeidia P de Oliveira, Damião P de Sousa, Renato Nery Soriano, Luiz G S Branco, Helio C Salgado, João Paulo J Sabino","doi":"10.1007/s00424-024-03035-7","DOIUrl":"10.1007/s00424-024-03035-7","url":null,"abstract":"<p><p>With the alarming rise in cases of arterial hypertension worldwide, there is an urgent need to develop combined therapies to mitigate this scenario. Rose oxide (RO), a monoterpene with anti-inflammatory and hypotensive properties, emerges as an alternative. The present study is the first to evaluate the effect of RO administered chronically and combined with physical exercise (swimming) since both have been reported to have beneficial impacts on hypertension. Male SHR and Wistar rats (aged 12 weeks) received RO for 34 consecutive days (orally; 100 mg/kg). The progression of systolic arterial pressure (SAP) was monitored through tail-cuff plethysmography. Twenty-four hours before the end of the treatment, the animals were anesthetized, and the femoral artery and vein were cannulated to record the pulsatile arterial pressure and to administer drugs, respectively. Hemodynamic and autonomic parameters and baroreflex sensitivity and intrinsic heart rate (IHR) were evaluated. Treatment with RO, administered alone or combined with exercise, reduced SAP and mean arterial pressure in SHR. The swimming protocol did not prevent increases in BP, but when combined with RO, it improved autonomic control, assessed through heart rate variability and parasympathetic tone. IHR was attenuated in SHR, and none of the treatments reversed this response. Therefore, combining RO with physical exercise may enhance their antihypertensive effects, improving autonomic function, reducing oxidative stress and inflammation, providing synergistic cardiovascular benefits, improving metabolic health, promoting a comprehensive lifestyle intervention, and potentially allowing for reduced medication dosages. This multifaceted approach could offer a more effective and sustainable strategy for managing hypertension.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"241-251"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}