The lateral habenula regulates stress-related respiratory responses via the monoaminergic system.

IF 2.9 4区 医学 Q2 PHYSIOLOGY
Riko Mizukami, Masayuki Matsumoto, Tadachika Koganezawa
{"title":"The lateral habenula regulates stress-related respiratory responses via the monoaminergic system.","authors":"Riko Mizukami, Masayuki Matsumoto, Tadachika Koganezawa","doi":"10.1007/s00424-024-03043-7","DOIUrl":null,"url":null,"abstract":"<p><p>Psychologic stress induces behavioral and autonomic responses such as acceleration of respiration. The lateral habenula (LHb) is noted to be involved in stress-induced behavioral responses. However, its involvement in stress-induced respiratory responses is unknown. In this study, we aimed to analyze whether and how the LHb regulates respiration. Electrical stimulation of the LHb of anesthetized Wistar male rats increased respiratory frequency and minute ventilation, calculated by respiratory frequency × thoracic movement amplitude. Systemic administration of a dopaminergic receptor antagonist, clozapine, suppressed the LHb-induced respiratory responses. On the other hand, administration of a serotonergic receptor antagonist, methysergide, significantly accelerated the LHb-induced increase in respiratory frequency, together with suppressing the thoracic movement amplitude. To clarify the source of dopaminergic modulation, we inhibited the ventral tegmental area (VTA), which contains dopaminergic neurons and receives inputs from the LHb, by administering microinjections of a GABA<sub>A</sub> agonist, muscimol. The bilateral inhibition of the VTA almost abolished the LHb-induced respiratory responses. These results suggest that LHb activation causes respiration acceleration, mainly mediated by dopaminergic neurons in the VTA and suppressively modulated by the serotonergic system. Neural circuits originating in the LHb may be a key modulator for respiration during psychological stress.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03043-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Psychologic stress induces behavioral and autonomic responses such as acceleration of respiration. The lateral habenula (LHb) is noted to be involved in stress-induced behavioral responses. However, its involvement in stress-induced respiratory responses is unknown. In this study, we aimed to analyze whether and how the LHb regulates respiration. Electrical stimulation of the LHb of anesthetized Wistar male rats increased respiratory frequency and minute ventilation, calculated by respiratory frequency × thoracic movement amplitude. Systemic administration of a dopaminergic receptor antagonist, clozapine, suppressed the LHb-induced respiratory responses. On the other hand, administration of a serotonergic receptor antagonist, methysergide, significantly accelerated the LHb-induced increase in respiratory frequency, together with suppressing the thoracic movement amplitude. To clarify the source of dopaminergic modulation, we inhibited the ventral tegmental area (VTA), which contains dopaminergic neurons and receives inputs from the LHb, by administering microinjections of a GABAA agonist, muscimol. The bilateral inhibition of the VTA almost abolished the LHb-induced respiratory responses. These results suggest that LHb activation causes respiration acceleration, mainly mediated by dopaminergic neurons in the VTA and suppressively modulated by the serotonergic system. Neural circuits originating in the LHb may be a key modulator for respiration during psychological stress.

外侧哈文脑通过单胺能系统调节与压力有关的呼吸反应。
心理压力会诱发行为和自律神经反应,如呼吸加速。据悉,外侧脑膜(LHb)参与了压力引起的行为反应。然而,它在应激诱导的呼吸反应中的参与程度尚不清楚。在本研究中,我们旨在分析 LHb 是否以及如何调节呼吸。电刺激麻醉 Wistar 雄性大鼠的 LHb 可增加呼吸频率和分钟通气量(以呼吸频率×胸廓运动幅度计算)。全身注射多巴胺能受体拮抗剂氯氮平可抑制 LHb 引起的呼吸反应。另一方面,服用血清素能受体拮抗剂甲地孕酮能显著加快 LHb 诱导的呼吸频率增加,同时抑制胸廓运动幅度。为了明确多巴胺能调节的来源,我们通过微注射 GABAA 激动剂 muscimol 来抑制腹侧被盖区(VTA)。对VTA的双侧抑制几乎取消了LHb诱导的呼吸反应。这些结果表明,LHb 激活会导致呼吸加速,主要由 VTA 中的多巴胺能神经元介导,并受到血清素能系统的抑制性调节。源自 LHb 的神经回路可能是心理应激时呼吸的关键调节器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信