{"title":"Effects of tDCS on glutamatergic pathways in epilepsy: neuroprotective and therapeutic potential.","authors":"Filiz Demirdogen, Guven Akcay","doi":"10.1007/s00424-024-03049-1","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a chronic neurological disease characterized by recurrent seizures caused by abnormal electrical activity in the brain. The aim of our study was to investigate the effect of tDCS on oxidative stress, Ca<sup>2+</sup>, glutamate, GABA, AMPAR1, and NMDAR1 levels in kindling-induced epilepsy model. Behavioral tests evaluated motor and cognitive functions, while assessing oxidative stress, Ca<sup>2+</sup>, glutamate, GABA, AMPAR1, and NMDAR1 levels in hippocampal tissue. tDCS stimulation therapy demonstrates a neuroprotective effect on motor and cognitive function postepilepsy. Our study reveals an increase in TOC, Ca<sup>2+</sup>, glutamate, GABA, AMPAR1, and NMDAR1 levels and a decline in total antioxidant capacity (TAC) following PTZ-induced seizures. However, tDCS treatment led to a significant decrease of Ca<sup>2+</sup>, total oxidant capacity (TOC), glutamate, GABA, AMPAR1, and NMDAR1 levels in the epilepsy cohorts, while simultaneously causing a spike in TAC levels. The study's results showed that tDCS treatment could have a therapeutic effect on oxidative stress, Ca<sup>2+</sup>, TOC, glutamate, GABA, AMPAR1, NMDAR1, and TAC in both acute and chronic kindling epilepsy models.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03049-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is a chronic neurological disease characterized by recurrent seizures caused by abnormal electrical activity in the brain. The aim of our study was to investigate the effect of tDCS on oxidative stress, Ca2+, glutamate, GABA, AMPAR1, and NMDAR1 levels in kindling-induced epilepsy model. Behavioral tests evaluated motor and cognitive functions, while assessing oxidative stress, Ca2+, glutamate, GABA, AMPAR1, and NMDAR1 levels in hippocampal tissue. tDCS stimulation therapy demonstrates a neuroprotective effect on motor and cognitive function postepilepsy. Our study reveals an increase in TOC, Ca2+, glutamate, GABA, AMPAR1, and NMDAR1 levels and a decline in total antioxidant capacity (TAC) following PTZ-induced seizures. However, tDCS treatment led to a significant decrease of Ca2+, total oxidant capacity (TOC), glutamate, GABA, AMPAR1, and NMDAR1 levels in the epilepsy cohorts, while simultaneously causing a spike in TAC levels. The study's results showed that tDCS treatment could have a therapeutic effect on oxidative stress, Ca2+, TOC, glutamate, GABA, AMPAR1, NMDAR1, and TAC in both acute and chronic kindling epilepsy models.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.