Pharmaceutical nanotechnology最新文献

筛选
英文 中文
Polymeric Nano-discs: A Versatile Nanocarrier Platform for Delivering Topical Theranostics. 聚合纳米片:一种用于局部治疗的多功能纳米载体平台。
Pharmaceutical nanotechnology Pub Date : 2025-01-17 DOI: 10.2174/0122117385353188241218153916
Devesh U Kapoor, Mansi Gaur, Hetal Hingalajia, Sudarshan Singh, Bhupendra G Prajapati
{"title":"Polymeric Nano-discs: A Versatile Nanocarrier Platform for Delivering Topical Theranostics.","authors":"Devesh U Kapoor, Mansi Gaur, Hetal Hingalajia, Sudarshan Singh, Bhupendra G Prajapati","doi":"10.2174/0122117385353188241218153916","DOIUrl":"https://doi.org/10.2174/0122117385353188241218153916","url":null,"abstract":"<p><p>Polymeric nano-discs offer a promising and adaptable nanocarrier platform for topical applications involving the targeted administration of drugs. These biocompatible polymer-based, disc-shaped, nanoscale structures have drawn interest due to their exceptional capacity to encapsulate a diverse range of theranostics. Theranostics, the concept of combining treatments and diagnostics into a single system, is the core of attraction. Precision and fewer adverse effects are provided by the regulated and prolonged release of these drugs made possible by polymeric nano-discs. They also offer the perfect foundation for keeping track of the effectiveness of treatments. The selection of polymeric materials that provide biocompatibility and customized release mechanisms is critical to effectively implementing polymeric nano-discs. Recent pre-clinical and clinical research has demonstrated efficacy in targeted therapeutic interventions. Nevertheless, there are obstacles and restrictions in real-world implementation, and more study is necessary to fully realize their potential. Hence polymeric nano-discs offer controlled drug release and simultaneous diagnostic capabilities, making them a flexible and viable path forward for topical theranostics. Their advancement has opportunities for improved treatment results; however, more study is needed to properly resolve obstacles and realize their therapeutic potential.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and In-Vitro Characterization of Solid Lipid Nanoparticles Containing Artemisinin and Curcumin. 含青蒿素和姜黄素的固体脂质纳米颗粒的制备和体外表征
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385296893240626061552
Bhagyashri Khatri, Vaishali Thakkar, Saloni Dalwadi, Avani Shah, Hardik Rana, Purvi Shah, Tejal Gandhi, Bhupendra Prajapati
{"title":"Preparation and <i>In-Vitro</i> Characterization of Solid Lipid Nanoparticles Containing Artemisinin and Curcumin.","authors":"Bhagyashri Khatri, Vaishali Thakkar, Saloni Dalwadi, Avani Shah, Hardik Rana, Purvi Shah, Tejal Gandhi, Bhupendra Prajapati","doi":"10.2174/0122117385296893240626061552","DOIUrl":"10.2174/0122117385296893240626061552","url":null,"abstract":"<p><strong>Background: </strong>Malaria remains a formidable public health obstacle across Africa, Southeast Asia, and portions of South America, exacerbated by resistance to antimalarial medications, such as artemisinin-based combinations. The combination of curcumin and artemisinin shows promise due to its potential for dose reduction, reduced toxicity, synergistic effects, and suitability for drug delivery improvement.</p><p><strong>Objectives: </strong>This research aims to enhance the solubility and dissolution rates of curcumin and artemisinin by employing Solid Lipid Nanoparticles (SLNs). Oral delivery of both drugs faces challenges due to their poor water solubility, inefficient absorption, and rapid metabolism and elimination.</p><p><strong>Methods: </strong>The study focuses on formulating and optimizing Solid Lipid Nanoparticles (SLNs) encapsulating artemisinin (ART) and curcumin (CUR). SLNs were developed using the hot homogenization method, incorporating ultrasonication. Drug-excipient compatibility was evaluated using Differential Scanning Calorimetry (DSC). Lipid and surfactant screening was performed to select suitable components. A 3² full factorial design was utilized to investigate the influence of lipid and surfactant concentrations on key parameters, such as entrapment efficiency (%EE) and cumulative drug release (%CDR). Additionally, evaluations of %EE, drug loading, particle size, zeta potential, and <i>in-vitro</i> drug release were conducted.</p><p><strong>Results: </strong>Successful development of artemisinin and curcumin SLNs was achieved using a full factorial design, demonstrating controlled drug release and high entrapment efficiency. The optimized nanoparticles exhibited a size of 114.7nm, uniformity (PDI: 0.261), and a zeta potential of -9.24 mV. Artemisinin and curcumin showed %EE values of 79.1% and 74.5%, respectively, with cumulative drug release of 85.1% and 80.9%, respectively. The full factorial design indicated that increased lipid concentration improved %EE, while higher surfactant concentration enhanced drug release and %EE. Stability studies of the optimized batch revealed no alterations in physical or chemical characteristics.</p><p><strong>Conclusion: </strong>The study successfully developed Solid Lipid Nanoparticles (SLNs) for artemisinin and curcumin, achieving controlled drug release, high entrapment efficiency, and desired particle size and uniformity. This advancement holds promise for enhancing drug delivery of herbal formulations.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"199-211"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Gene Therapy through Ultradeformable Vesicles for Efficient siRNA Delivery. 通过超可塑囊泡高效递送 siRNA 增强基因疗法。
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385271654231215064542
Chintan Aundhia, Nirmal Shah, Chitrali Talele, Aarti Zanwar, Mamta Kumari, Sapana Patil
{"title":"Enhancing Gene Therapy through Ultradeformable Vesicles for Efficient siRNA Delivery.","authors":"Chintan Aundhia, Nirmal Shah, Chitrali Talele, Aarti Zanwar, Mamta Kumari, Sapana Patil","doi":"10.2174/0122117385271654231215064542","DOIUrl":"10.2174/0122117385271654231215064542","url":null,"abstract":"<p><p>Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA.These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"55-69"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery. 光敏脂质体:靶向给药的新策略。
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385271651231228073850
Chintan Aundhia, Ghanshyam Parmar, Chitrali Talele, Dipali Talele, Avinsh Kumar Seth
{"title":"Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery.","authors":"Chintan Aundhia, Ghanshyam Parmar, Chitrali Talele, Dipali Talele, Avinsh Kumar Seth","doi":"10.2174/0122117385271651231228073850","DOIUrl":"10.2174/0122117385271651231228073850","url":null,"abstract":"<p><p>Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"41-54"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core-Shell Nanoparticles for Pulmonary Drug Delivery. 用于肺部给药的核壳纳米颗粒
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385277725231120043600
Mukesh P Ratnaparkhi, Shailendra S Salvankar, Avinash R Tekade, Gajanan M Kulkarni
{"title":"Core-Shell Nanoparticles for Pulmonary Drug Delivery.","authors":"Mukesh P Ratnaparkhi, Shailendra S Salvankar, Avinash R Tekade, Gajanan M Kulkarni","doi":"10.2174/0122117385277725231120043600","DOIUrl":"10.2174/0122117385277725231120043600","url":null,"abstract":"<p><p>Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"90-116"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid Lipid Nanoparticles as an Innovative Lipidic Drug Delivery System. 固体脂质纳米颗粒作为一种创新的脂质给药系统
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385271393231117063750
Suchita Waghmare, Rohini Palekar, Lata Potey, Pramod Khedekar, Prafulla Sabale, Vidya Sabale
{"title":"Solid Lipid Nanoparticles as an Innovative Lipidic Drug Delivery System.","authors":"Suchita Waghmare, Rohini Palekar, Lata Potey, Pramod Khedekar, Prafulla Sabale, Vidya Sabale","doi":"10.2174/0122117385271393231117063750","DOIUrl":"10.2174/0122117385271393231117063750","url":null,"abstract":"<p><p>In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"22-40"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Characterization of Sulfasalazine Cubosomes for Potential Transdermal Drug Delivery. 用于潜在透皮给药的磺胺柳氮立方体的开发与表征
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385269522231113041029
Mekha Mathew, Anasuya Patil, Hemanth G
{"title":"Development and Characterization of Sulfasalazine Cubosomes for Potential Transdermal Drug Delivery.","authors":"Mekha Mathew, Anasuya Patil, Hemanth G","doi":"10.2174/0122117385269522231113041029","DOIUrl":"10.2174/0122117385269522231113041029","url":null,"abstract":"<p><strong>Background: </strong>Rheumatoid arthritis is indeed a constant, progressive autoimmune disease that acts on the synovial membrane, distinguished by joint pain, swelling, and tenderness. Sulfasalazine belongs to BCS Class IV having low solubility and low permeability. To overcome the issue and provide a localized effect Cubosomes were chosen for the transdermal drug delivery system.</p><p><strong>Objectives: </strong>The primary objective of this investigation was to pass on sulfasalazine-loaded cubosomes over the skin to treat rheumatoid arthritis. On the way to overcome this issue of oral sulfasalazine and provide localized effect, Cubosomes were chosen for the transdermal drug delivery system.</p><p><strong>Methods: </strong>Sulfasalazine-loaded cubosomes were prepared by the top-down method using GMO and Poloxamer 407. Different concentrations of lipid and surfactant were used in the formulation using 3<sup>2</sup> full factorial designs. The prepared formulations were assessed for p.s, z,p, %EE, FTIR, SEM, <i>in-vitro</i> release, <i>ex-vivo</i> permeation, and deposition studies with pH 7.4 phosphate buffer saline.</p><p><strong>Results: </strong>The particle size varies between 65 nm to 129 nm, while the negative zeta potential ranged from - 18.8 mV to -24.8 mV. The entrapment efficiency was between 87% and 95%. The formulations' in-vitro drug release was carried out for 12 hours. The optimized formulation showed a controlled release of sulfasalazine and better ex-vivo permeation and deposition properties than sulfasalazine suspension.</p><p><strong>Conclusion: </strong>Overall study findings support the possibility of applying transdermal sulfasalazineloaded cubosomes to alleviate rheumatoid arthritis.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"320-327"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RES-CMCNPs Enhance Antioxidant, Proinflammatory, and Sensitivity of Tumor Solids to γ-irradiation in EAC-Bearing Mice. RES-CMCNPs可增强EAC小鼠的抗氧化性、促炎性以及肿瘤实体对γ-照射的敏感性。
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385290497240324190453
Mohamed S Mansour, Amira A Mahmoud, Mohannad A Sayah, Zahraa N Mohamed, Mohammed A Hussein, Diana A ALsherif
{"title":"RES-CMCNPs Enhance Antioxidant, Proinflammatory, and Sensitivity of Tumor Solids to γ-irradiation in EAC-Bearing Mice.","authors":"Mohamed S Mansour, Amira A Mahmoud, Mohannad A Sayah, Zahraa N Mohamed, Mohammed A Hussein, Diana A ALsherif","doi":"10.2174/0122117385290497240324190453","DOIUrl":"10.2174/0122117385290497240324190453","url":null,"abstract":"<p><strong>Objectives: </strong>Resveratrol (Res) is a bifunctional compound found in numerous plants, including grapes and mulberries. Nanotechnology has promising applications in medicine. The ability of various nanomaterials to serve as radiosensitizers against tumor cells were reported in several manuscripts. The present investigation aimed to assess the antitumor and radiosensitizing effects of Res-CMCNPs on EAC-bearing mice.</p><p><strong>Methods: </strong>Res-CMCNPs have been developed using the CMC emulsification cross-linking technique. Entrapment efficiency (%), particle size, Polydispersity index and ZETA potential, UV, FTIR spectra, and drug release were evaluated and described for RES-CMCNPs. The radiosensitizing properties of RES-CMCNPs were also evaluated <i>in vitro</i> and <i>in vivo</i> against EAC-carrying rodents. The LD50 of Res-CMCNPs was estimated and its 1/20 LD50 was prepared for treating EAC transplanted mice.</p><p><strong>Results: </strong>The results revealed that the Res-CMCNPs exhibited a high entrapment efficiency (85.46%) and a size of approximately 184.60 ±17.36 nm with zeta potential value equals -51.866 mv. Also, the UV spectra of Res and Res-CMCNPs have strong absorption at 225 and 290 nm. The percentage of resveratrol release at pHs 5.8 and 7.4 was found to be 56.73% and 51.60%, respectively, after 24 h at 100 rpm. Also, the FTIR analysis confirmed the chemical stability of resveratrol in Res-CMCNPs cross-linking. The IC<sub>50</sub> values of Res-CMCNPs against EAC cells viability were 32.99, 25.46, and 22.21 μg after 24-, 48- and 72 h incubation, respectively, whereas those of Res- CMCNPs in combination with γ-irradiation after 6-, 10 and 12-mins exposure were 24.07, 16.06 and 7.48 μg, respectively. Also, the LD50 of Res-CMCNPs was 2180 mg/kg.b.w. The treatment of EAC-bearing mice with Res-CMCNPs plus γ-irradiation improved plasma levels of NO, caspase-3, P53 and NF-kB levels as well as liver MDA, GSH, SOD, CAT, LT-B4, aromatase, Bax, Bcl2 and TGF-β levels and exhibited more significant anticancer activity than administration of Res- CMCNPs and/or exposure to γ-irradiation individually. On the other hand, administration of Res- CMCNPs in combination with γ-irradiation attenuated liver mRNAs (21, 29b, 181a, and 451) gene expression.</p><p><strong>Conclusion: </strong>Grafting resveratrol onto carboxymethyl chitosan appears to be a promising strategy for cancer therapy as a radiosensitizer, potentiating tumor cells' sensitivity to radiation by improving levels of proinflammatory features and antioxidant biomarkers.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"254-269"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Intranasal Amisulpride Loaded Nanostructured Lipid Carriers: Formulation, Development, and Characterization Parameters. 优化鼻内氨硫pride负载的纳米结构脂质载体:配方,开发和表征参数。
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385301604240226111533
Manar Adnan Tamer, Hanan Jalal Kassab
{"title":"Optimizing Intranasal Amisulpride Loaded Nanostructured Lipid Carriers: Formulation, Development, and Characterization Parameters.","authors":"Manar Adnan Tamer, Hanan Jalal Kassab","doi":"10.2174/0122117385301604240226111533","DOIUrl":"10.2174/0122117385301604240226111533","url":null,"abstract":"<p><strong>Background: </strong>Nanostructured lipid carriers (NLCs) are lipid-based nanoparticles composed of a mixture of solid and liquid lipids, which are stabilized by the outer surface of a surfactant.</p><p><strong>Objectives: </strong>This research aimed to prepare intranasal nanostructured lipid carriers loaded with amisulpride to enhance its dissolution and bioavailability using different formulation compositions.</p><p><strong>Methods: </strong>Amisulpride nanostructured lipid carriers were formulated using ultra-sonication methods. Solid lipids like stearic acid, palmitic acid, and glyceryl monostearate were used, while liquid lipids like oleic acid, Imwitor 988, and isopropyl myristate were employed. Surfactants used were cremophor®EL, tween 80, and span 20 with different co-surfactants: Transcutol HP, triacetin, and propylene glycol in different ratios. The key metrics used in this study's evaluation were particle size, polydispersity index, zeta potential, entrapment efficiency, and loading efficiency. The formulations with the best characteristics were also subjected to an <i>in-vitro</i> release test.</p><p><strong>Results: </strong>The results showed a significant shift in some evaluation criteria with a non-significant change in other characterizations upon switching between different types and ratios of compositions. A biphasic release pattern was also observed. The optimum formula F19 was found to have 68.309±0.38 nm, 0.2408±0.004, -20.64±0.11 mV, 95.75±0.26 and 18.07±0.36, respectively. It was safe on the sheep nasal membrane.</p><p><strong>Conclusion: </strong>The right combination of the formulation compositions based on studying the effect of each factor on the main formulation characteristics can serve as the basis for a successful intranasal amisulpride-loaded nanostructured lipid carrier.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":"13 2","pages":"287-302"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143503222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study of Liposomal and Ethosomal Formulations of Curcuma heyneana Rhizome Extract in a Transdermal Delivery System. 姜黄根状茎提取物在透皮给药系统中的脂质体和质体配方的比较研究。
Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0122117385252518231018161755
Idha Kusumawati, Kresma Oky Kurniawan, Rohmania Rohmania, Bernasdito Ade Pratama, Yusuf Alif Pratama, Subhan Rullyansyah, Mega Ferdina Warsito, Retno Widyowati, Eka Pramyrtha Hestianah, Katsuyoshi Matsunami
{"title":"Comparative Study of Liposomal and Ethosomal Formulations of <i>Curcuma heyneana</i> Rhizome Extract in a Transdermal Delivery System.","authors":"Idha Kusumawati, Kresma Oky Kurniawan, Rohmania Rohmania, Bernasdito Ade Pratama, Yusuf Alif Pratama, Subhan Rullyansyah, Mega Ferdina Warsito, Retno Widyowati, Eka Pramyrtha Hestianah, Katsuyoshi Matsunami","doi":"10.2174/0122117385252518231018161755","DOIUrl":"10.2174/0122117385252518231018161755","url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to develop an anti-aging nanoformulation with <i>Curcuma heyneana</i> extract as bioactive substance.</p><p><strong>Background: </strong><i>Curcuma heyneana</i> Valeton & Zipj extract has been proven in previous research to have antioxidant, anti-ageing, anti-inflammatory, and wound healing properties, which makes it a potential bioactive material for anti-ageing and sunscreen cosmetic products. Phytoantioxidants need to penetrate into deeper skin layers to ensure effectivity. Thus, a transdermal delivery system is needed to deliver the extract to a deeper skin layer.</p><p><strong>Objectives: </strong>The objective of the study was to compare the permeability and anti-ageing activity of liposomal and ethosomal formulations of C. heynena rhizome ethanolic extract.</p><p><strong>Methods: </strong>In this study, <i>C. heyneana</i> extract was loaded into a phospholipid vesicular system in the form of liposome and ethosome formulations using the ethanolic injection method. The anti-ageing activity was assessed by analyzing the epidermal thickness, number of sunburn cells, distance between collagen fibers, and number of fibroblasts. While the histologic specimen scoring was carried out for the in vivo penetration study.</p><p><strong>Results: </strong>The ethosomal formulation had been found to have better penetration ability since it was able to reach the lower dermis area compared to the liposomes, which only reached the upper dermis. The ethosomal formulation of <i>C. heyneana</i> extract exhibited a better anti-ageing activity based on the parameters of epidermal thickness, sunburn cell count, fibroblast count, and the distance between collagen fibres in rat skin histology.</p><p><strong>Conclusion: </strong>Ethosomes have been found to be a more proficient carrier system for transdermal delivery of <i>C. heyneana</i> extract compared to liposomes. Meanwhile, their penetration correlated with the effectivity of the formulation, suggesting that the vesicular system enhanced the penetration ability of the extract.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"303-312"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71484671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信