{"title":"Wide-field, high-resolution reconstruction in computational multi-aperture miniscope using a Fourier neural network","authors":"Qianwan Yang, Ruipeng Guo, Guorong Hu, Yujia Xue, Yunzhe Li, Lei Tian","doi":"10.1364/optica.523636","DOIUrl":"https://doi.org/10.1364/optica.523636","url":null,"abstract":"Traditional fluorescence microscopy is constrained by inherent trade-offs among resolution, field of view, and system complexity. To navigate these challenges, we introduce a simple and low-cost computational multi-aperture miniature microscope, utilizing a microlens array for single-shot wide-field, high-resolution imaging. Addressing the challenges posed by extensive view multiplexing and non-local, shift-variant aberrations in this device, we present SV-FourierNet, a multi-channel Fourier neural network. SV-FourierNet facilitates high-resolution image reconstruction across the entire imaging field through its learned global receptive field. We establish a close relationship between the physical spatially varying point-spread functions and the network’s learned effective receptive field. This ensures that SV-FourierNet has effectively encapsulated the spatially varying aberrations in our system and learned a physically meaningful function for image reconstruction. Training of SV-FourierNet is conducted entirely on a physics-based simulator. We showcase wide-field, high-resolution video reconstructions on colonies of freely moving <jats:italic toggle=\"yes\">C. elegans</jats:italic> and imaging of a mouse brain section. Our computational multi-aperture miniature microscope, augmented with SV-FourierNet, represents a major advancement in computational microscopy and may find broad applications in biomedical research and other fields requiring compact microscopy solutions.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"51 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-05-28DOI: 10.1364/optica.525961
Bianca Rae Fabricante, Mateusz Król, Matthias Wurdack, Maciej Pieczarka, Mark Steger, David W. Snoke, Kenneth West, Loren N. Pfeiffer, Andrew G. Truscott, Elena A. Ostrovskaya, Eliezer Estrecho
{"title":"Narrow-linewidth exciton-polariton laser","authors":"Bianca Rae Fabricante, Mateusz Król, Matthias Wurdack, Maciej Pieczarka, Mark Steger, David W. Snoke, Kenneth West, Loren N. Pfeiffer, Andrew G. Truscott, Elena A. Ostrovskaya, Eliezer Estrecho","doi":"10.1364/optica.525961","DOIUrl":"https://doi.org/10.1364/optica.525961","url":null,"abstract":"Exciton-polariton lasers are a promising source of coherent light for low-energy applications due to their low-threshold operation. However, a detailed experimental study of their spectral purity, which directly affects their coherence properties, is still missing. Here, we present a high-resolution spectroscopic investigation of the energy and linewidth of an exciton-polariton laser in the single-mode regime, which derives its coherent emission from an optically pumped and confined exciton-polariton condensate. We report an ultra-narrow linewidth of 56 MHz or 0.24 µeV, corresponding to a coherence time of 5.7 ns. The narrow linewidth is consistently achieved by using an exciton-polariton condensate with a high photonic content confined in an optically induced trap. Contrary to previous studies, we show that the excitonic reservoir created by the pump and responsible for creating the trap does not strongly affect the emission linewidth as long as the condensate is trapped and the pump power is well above the condensation (lasing) threshold. The long coherence time of the exciton-polariton system uncovered here opens up opportunities for manipulating its macroscopic quantum state, which is essential for applications in classical and quantum computing.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"61 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-05-17DOI: 10.1364/optica.503095
Adam Widomski, Maciej Ogrodnik, Michał Karpiński
{"title":"Efficient detection of multidimensional single-photon time-bin superpositions","authors":"Adam Widomski, Maciej Ogrodnik, Michał Karpiński","doi":"10.1364/optica.503095","DOIUrl":"https://doi.org/10.1364/optica.503095","url":null,"abstract":"The ability to detect quantum superpositions lies at the heart of fundamental and applied aspects of quantum mechanics. The time-frequency degree of freedom of light enables encoding and transmitting quantum information in a multidimensional fashion compatible with fiber and integrated platforms. However, the ability to efficiently detect high-dimensional time-bin superpositions, a subset of encodings in the wider time-frequency paradigm, is not yet available. Here we show that multidimensional time-bin superpositions can be detected using a single time-resolved photon detector. Our approach uses off-the-shelf components and is based on the temporal Talbot effect—a time-frequency counterpart of the well-known near field diffraction effect. We provide experimental results and highlight the possible applications in quantum communication, quantum information processing, and time-frequency quantum state tomography.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"5 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-05-14DOI: 10.1364/optica.524812
Sami Wirtensohn, Peng Qi, Christian David, Julia Herzen, Imke Greving, Silja Flenner
{"title":"Nanoscale dark-field imaging in full-field transmission X-ray microscopy","authors":"Sami Wirtensohn, Peng Qi, Christian David, Julia Herzen, Imke Greving, Silja Flenner","doi":"10.1364/optica.524812","DOIUrl":"https://doi.org/10.1364/optica.524812","url":null,"abstract":"The dark-field signal uncovers details beyond conventional X-ray attenuation contrast, which is especially valuable for material sciences. In particular, dark-field techniques are able to reveal structures beyond the spatial resolution of a setup. However, its implementation is limited to the micrometer regime. Therefore, we propose a technique to extend full-field transmission X-ray microscopy by the dark-field signal. The proposed method is based on a well-defined illumination of a beam-shaping condenser, which allows to block the bright field by motorized apertures in the back focal plane of the objective lens. This method offers a simple implementation and enables rapid modality changes while maintaining short scan times, making dark-field imaging widely available at the nanometer scale.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"43 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-05-10DOI: 10.1364/optica.522378
Mostafa Honari Latifpour, Byoung Jun Park, Yoshihisa Yamamoto, Myoung-Gyun Suh
{"title":"Hyperspectral in-memory computing with optical frequency combs and programmable optical memories","authors":"Mostafa Honari Latifpour, Byoung Jun Park, Yoshihisa Yamamoto, Myoung-Gyun Suh","doi":"10.1364/optica.522378","DOIUrl":"https://doi.org/10.1364/optica.522378","url":null,"abstract":"The rapid rise of machine learning drives demand for extensive matrix-vector multiplication operations, thereby challenging the capacities of traditional von Neumann computing systems. Researchers explore alternatives, such as in-memory computing architecture, to find energy-efficient solutions. In particular, there is renewed interest in optical computing systems, which could potentially handle matrix-vector multiplication in a more energy-efficient way. Despite promising initial results, developing high-throughput optical computing systems to rival electronic hardware remains a challenge. Here, we propose and demonstrate a hyperspectral in-memory computing architecture, which simultaneously utilizes space and frequency multiplexing, using optical frequency combs and programmable optical memories. Our carefully designed three-dimensional opto-electronic computing system offers remarkable parallelism, programmability, and scalability, overcoming typical limitations of optical computing. We have experimentally demonstrated highly parallel, single-shot multiply-accumulate operations with precision exceeding 4 bits in both matrix-vector and matrix-matrix multiplications, suggesting the system’s potential for a wide variety of deep learning and optimization tasks. Our approach presents a realistic pathway to scale beyond peta operations per second, a major stride towards high-throughput, energy-efficient optical computing.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"50 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-05-07DOI: 10.1364/optica.514362
Jonathan W. Webb, Joseph Ho, Federico Grasselli, Gláucia Murta, Alexander Pickston, Andres Ulibarrena, Alessandro Fedrizzi
{"title":"Experimental anonymous quantum conferencing","authors":"Jonathan W. Webb, Joseph Ho, Federico Grasselli, Gláucia Murta, Alexander Pickston, Andres Ulibarrena, Alessandro Fedrizzi","doi":"10.1364/optica.514362","DOIUrl":"https://doi.org/10.1364/optica.514362","url":null,"abstract":"Anonymous quantum conference key agreement (AQCKA) allows a group of users within a network to establish a shared cryptographic key without revealing their participation. Although this can be achieved using bipartite primitives alone, it is costly in the number of network rounds required. By allowing the use of multi-partite entanglement, there is a substantial efficiency improvement. We experimentally implement the AQCKA task in a six-user quantum network using Greenberger–Horne–Zeilinger (GHZ)-state entanglement and obtain a significant resource cost reduction in line with theory when compared to a bipartite-only approach. We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"46 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-05-06DOI: 10.1364/optica.515959
Siddhant Pandey, Liang Z. Tan, Francis Walz, Varun Makhija, Niranjan Shivaram
{"title":"Ultrafast temporal phase-resolved nonlinear optical spectroscopy in the molecular frame","authors":"Siddhant Pandey, Liang Z. Tan, Francis Walz, Varun Makhija, Niranjan Shivaram","doi":"10.1364/optica.515959","DOIUrl":"https://doi.org/10.1364/optica.515959","url":null,"abstract":"In an ultrafast nonlinear optical interaction, the electric field of the emitted nonlinear signal provides direct access to the induced nonlinear transient polarization or transient currents and thus carries signatures of ultrafast dynamics in a medium. Measurement of the electric field of such signals offers sensitive observables to track ultrafast electron dynamics in various systems. In this work, we resolve the real-time phase of the electric field of a femtosecond third-order nonlinear optical signal in the molecular frame. The electric field emitted from impulsively pre-aligned gas-phase molecules at room temperature, in a degenerate four-wave mixing scheme, is measured using a spectral interferometry technique. The nonlinear signal is measured around a rotational revival to extract its molecular-frame angle dependence from pump-probe time-delay scans. By comparing these measurements for two linear molecules, carbon dioxide and nitrogen, we show that the measured second-order phase parameter (temporal chirp) of the signal is sensitive to the valence electronic symmetry of the molecules, whereas the amplitude of the signal does not show such sensitivity. We compare measurements to theoretical calculations of the chirp observable in the molecular frame. This work is an important step towards using electric field measurements in nonlinear optical spectroscopy to study ultrafast dynamics of electronically excited molecules in the molecular frame.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"51 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-05-02DOI: 10.1364/optica.518559
Courtney Johnson, Min Guo, Magdalena C. Schneider, Yijun Su, Satya Khuon, Nikolaj Reiser, Yicong Wu, Patrick La Riviere, Hari Shroff
{"title":"Phase-diversity-based wavefront sensing for fluorescence microscopy","authors":"Courtney Johnson, Min Guo, Magdalena C. Schneider, Yijun Su, Satya Khuon, Nikolaj Reiser, Yicong Wu, Patrick La Riviere, Hari Shroff","doi":"10.1364/optica.518559","DOIUrl":"https://doi.org/10.1364/optica.518559","url":null,"abstract":"Fluorescence microscopy is an invaluable tool in biology, yet its performance is compromised when the wavefront of light is distorted due to optical imperfections or the refractile nature of the sample. Such optical aberrations can dramatically lower the information content of images by degrading the image contrast, resolution, and signal. Adaptive optics (AO) methods can sense and subsequently cancel the aberrated wavefront, but they are too complex, inefficient, slow, or expensive for routine adoption by most labs. Here, we introduce a rapid, sensitive, and robust wavefront sensing scheme based on phase diversity, a method successfully deployed in astronomy but underused in microscopy. Our method enables accurate wavefront sensing to less than <jats:italic>λ</jats:italic>/35 root mean square (RMS) error with few measurements, and AO with no additional hardware besides a corrective element. After validating the method with simulations, we demonstrate the calibration of a deformable mirror >hundredfold faster than comparable methods (corresponding to wavefront sensing on the ∼100ms scale), and sensing and subsequent correction of severe aberrations (RMS wavefront distortion exceeding <jats:italic>λ</jats:italic>/2), restoring diffraction-limited imaging on extended biological samples.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"209 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-04-30DOI: 10.1364/optica.528967
Christophe Dorrer, Prem Kumar, Guifang Li
{"title":"Collaborative publication of related articles puts focus on emerging topics: editorial","authors":"Christophe Dorrer, Prem Kumar, Guifang Li","doi":"10.1364/optica.528967","DOIUrl":"https://doi.org/10.1364/optica.528967","url":null,"abstract":"The editors of <jats:italic toggle=\"yes\">Advances in Optics and Photonics</jats:italic> and <jats:italic toggle=\"yes\">Optica</jats:italic> introduce a collaborative publishing effort that highlights emerging fields in ways that will benefit both new and seasoned researchers. In this first example, a tutorial and a mini-review cover the physics of second-order nonlinear interactions in dispersion-engineered nonlinear photonic devices.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"7 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpticaPub Date : 2024-04-30DOI: 10.1364/optica.524431
Jiacheng Xie, Mohan Shen, Hong X. Tang
{"title":"Sub-terahertz optomechanics","authors":"Jiacheng Xie, Mohan Shen, Hong X. Tang","doi":"10.1364/optica.524431","DOIUrl":"https://doi.org/10.1364/optica.524431","url":null,"abstract":"We demonstrate optomechanics in the sub-terahertz regime. An optical racetrack resonator, patterned from thin-film lithium niobate, is suspended to support mechanical structures oscillating at these extremely high frequencies, which are read out through cavity optomechanical coupling. Our hybrid platform paves the way for advancing mechanical systems in the quantum regime at elevated temperatures.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"40 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}