npj Climate and Atmospheric Science最新文献

筛选
英文 中文
Faster dieback of rainforests altering tropical carbon sinks under climate change 雨林枯死速度加快改变气候变化下的热带碳汇
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-06 DOI: 10.1038/s41612-024-00793-0
Debashis Nath, Reshmita Nath, Wen Chen
{"title":"Faster dieback of rainforests altering tropical carbon sinks under climate change","authors":"Debashis Nath, Reshmita Nath, Wen Chen","doi":"10.1038/s41612-024-00793-0","DOIUrl":"10.1038/s41612-024-00793-0","url":null,"abstract":"Carbon sinks in the tropical rainforests are restricting the global warming to attain unprecedented heights. However, deforestation and climate change is switching them to a net carbon source at some of the deforested patches. Using machine learning algorithm we predict that more than 50% of the tropical rainforests will undergo rapid “Savannisation”/transformation by the end of 21st century under high emission scenarios. Climate change projects ‘El Niño-like’ warming condition, which decreases precipitation in the rainforests and favors atmospheric dryness. In Central Amazonia vegetation degradation saturates the carbon sink and more than 25% of the rainforests will transform into a net carbon source due to increase in soil microbial respiration. This transition will accelerate if Eastern Pacific/Global temperature warms beyond 1.5◦K/2.3◦K (by 2050’s) and will undergo a steeper transit by ~2075 (2.45◦K/3.8◦K warming). This alteration will exacerbate global warming and has consequences for policies that are intended to stabilize Earth’s climate.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00793-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intraseasonal shift in the wintertime North Atlantic jet structure projected by CMIP6 models CMIP6 模式预测的冬季北大西洋喷流结构的季节内变化
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-04 DOI: 10.1038/s41612-024-00775-2
Marina García-Burgos, Blanca Ayarzagüena, David Barriopedro, Tim Woollings, Ricardo García-Herrera
{"title":"Intraseasonal shift in the wintertime North Atlantic jet structure projected by CMIP6 models","authors":"Marina García-Burgos, Blanca Ayarzagüena, David Barriopedro, Tim Woollings, Ricardo García-Herrera","doi":"10.1038/s41612-024-00775-2","DOIUrl":"10.1038/s41612-024-00775-2","url":null,"abstract":"The projected winter changes of the North Atlantic eddy-driven jet (EDJ) under climate change conditions have been extensively analysed. Previous studies have reported a squeezed and elongated EDJ. However, other changes present large uncertainties, specifically those related to the intensity and latitude. Here, the projections of the EDJ in a multimodel ensemble of CMIP6 are scrutinised by using a multiparametric description of the EDJ. The multimodel mean projects non-stationary responses of the EDJ latitude through the winter, characterised by a poleward shift in early winter and equator migration in late winter. These intraseasonal shifts (rather than a genuine narrowing) explain the previously established squeezing of the EDJ and are linked to the future changes in different drivers: the 200 hPa meridional temperature gradient and Atlantic warming hole in early winter, and the stratospheric vortex in late winter. Model biases also influence EDJ projections, contributing to the poleward shift in early winter.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00775-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Pacific Northwest heat extremes and wildfire risks induced by the boreal summer intraseasonal oscillation 北方夏季季内振荡引起的西北太平洋极端高温和野火风险增加
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-03 DOI: 10.1038/s41612-024-00766-3
Sandro W. Lubis, Ziming Chen, Jian Lu, Samson Hagos, Chuan-Chieh Chang, L. Ruby Leung
{"title":"Enhanced Pacific Northwest heat extremes and wildfire risks induced by the boreal summer intraseasonal oscillation","authors":"Sandro W. Lubis, Ziming Chen, Jian Lu, Samson Hagos, Chuan-Chieh Chang, L. Ruby Leung","doi":"10.1038/s41612-024-00766-3","DOIUrl":"10.1038/s41612-024-00766-3","url":null,"abstract":"The occurrence of extreme hot and dry summer conditions in the Pacific Northwest region of North America (PNW) has been known to be influenced by climate modes of variability such as the El Niño-Southern Oscillation and other variations in tropospheric circulation such as stationary waves and blocking. However, the extent to which the subseasonal remote tropical driver influences summer heat extremes and fire weather conditions across the PNW remains elusive. Our investigation reveals that the occurrence of heat extremes and associated fire-conducive weather conditions in the PNW is significantly heightened during the boreal summer intraseasonal oscillation (BSISO) phases 6-7, by ~50–120% relative to the seasonal probability. The promotion of these heat extremes is primarily attributed to the enhanced diabatic heating over the tropical central-to-eastern North Pacific, which generates a wave train traveling downstream toward North America, resulting in a prominent high-pressure system over the PNW. The ridge, subsequently, promotes surface warming over the region primarily through increased surface radiative heating and enhanced adiabatic warming. The results suggest a potential pathway to improving subseasonal-to-seasonal predictions of heatwaves and wildfire risks in the PNW by improving the representation of BSISO heating over the tropical-to-eastern North Pacific.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-15"},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00766-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected Antarctic sea ice change contributes to increased occurrence of strong El Niño 预计南极海冰变化导致强厄尔尼诺现象增多
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-03 DOI: 10.1038/s41612-024-00789-w
Jiping Liu, Zhu Zhu
{"title":"Projected Antarctic sea ice change contributes to increased occurrence of strong El Niño","authors":"Jiping Liu, Zhu Zhu","doi":"10.1038/s41612-024-00789-w","DOIUrl":"10.1038/s41612-024-00789-w","url":null,"abstract":"Current climate models suggested that Antarctic sea ice cover would decrease substantially under cumulative CO2 emission, but little is known whether large decrease in Antarctic sea ice can influence the occurrence of strong El Niño. Using time slice coupled and uncoupled model experiments, we show that in response to half reduction of Antarctic sea ice projected near the end of the 21st century, the frequency of strong El Niño would be increased by ~40%. It is contributed by enhanced thermocline, Ekman, and zonal advective positive feedbacks that are partly offset by enhanced thermodynamic damping. The strong warming and weakened westerly winds in the southeastern Pacific generate an anomalous Rossby wave propagating into the eastern subtropical and tropical Pacific, favoring stronger El Nino, and air-sea coupling and ocean feedbacks play a critical role in the teleconnection. Unexpectedly, compare to halved Antarctic sea ice, the ice-free Antarctic leads to a decrease in the frequency of strong El Niño, which is largely due to a substantial increase in thermodynamic damping. We also show that a large portion of the increase of strong El Niño events under greenhouse warming might be connected with Antarctic sea-ice loss, though increased greenhouse gas plays an important role.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-8"},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00789-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of atmospheric moisture transport to the Tibetan Plateau from 33 CMIP6 models 从 33 个 CMIP6 模型评估青藏高原的大气水汽输送情况
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-01 DOI: 10.1038/s41612-024-00785-0
Yigang Liu, Jing Gao, Yilong Wang
{"title":"Evaluation of atmospheric moisture transport to the Tibetan Plateau from 33 CMIP6 models","authors":"Yigang Liu, Jing Gao, Yilong Wang","doi":"10.1038/s41612-024-00785-0","DOIUrl":"10.1038/s41612-024-00785-0","url":null,"abstract":"Atmospheric moisture transport is pivotal in regulating water resources over the Tibetan Plateau (TP). With the growing concerns about climate change, understanding the evolution of atmospheric moisture transport over the TP has become increasingly critical. however, the spatiotemporal distinctions of this transport remain poorly understood in the CMIP6 models. Here, we conducted a comprehensive evaluation of simulated historical atmospheric moisture transport from 33 CMIP6 models, utilizing a novel methodology that assesses the accuracy of model simulations in replicating regional atmospheric moisture transport over the TP. Our results indicate that the CMIP6 models generally succeed in reproducing the broad spatial patterns of atmospheric moisture transport. Nonetheless, substantial errors occur during the monsoon period, primarily attributable to inaccuracies in the location, movement, and intensity of the simulated Indian summer monsoon. The coarser resolution and poor representation of physical processes are potential reasons for errors in atmospheric moisture transport simulation over the TP. The Failure to simulate the terrain blocking on atmospheric moisture transport exacerbates these deficiencies, leading to significant discrepancies. Of the 33 CMIP6 models we investigated, over one-third displayed serious deficiencies in this regard. While coarser resolution and orographic gravity waves are plausible factors, they do not fully account for all the results obtained in this study. Insufficiently detailed or inaccurate topographic data used in the models may also contribute to this deficiency. This study highlights the necessity of using rigorously evaluated models to develop effective regional adaptation strategies over the Tibetan Plateau.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00785-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization of atmospheric organic aerosols in typical megacities in China 中国典型特大城市大气有机气溶胶的分子特征
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-01 DOI: 10.1038/s41612-024-00784-1
Miaomiao Zhang, Dongmei Cai, Jingxin Lin, Zirui Liu, Mei Li, Yuesi Wang, Jianmin Chen
{"title":"Molecular characterization of atmospheric organic aerosols in typical megacities in China","authors":"Miaomiao Zhang, Dongmei Cai, Jingxin Lin, Zirui Liu, Mei Li, Yuesi Wang, Jianmin Chen","doi":"10.1038/s41612-024-00784-1","DOIUrl":"10.1038/s41612-024-00784-1","url":null,"abstract":"Atmospheric aerosols in megacities impact air quality and public health. However, limited information exists on the detailed molecular composition of organic aerosols in urban areas. This study characterized the molecular composition of organic aerosols (OA) in Shanghai, Beijing and Guangzhou, China, during summer and winter of 2021. Liquid chromatography-orbitrap mass spectrometry detected 4536−5560 and 2067− 3489 organic molecular formulas in positive (ESI+) and negative (ESI−) electrospray ionization modes, respectively. CHO and CHON compounds accounted for over 80% and 60% of total abundance in ESI+ and ESI−, respectively, suggesting their significant contribution to urban OA. The number and abundance percentages of CHO showed obvious seasonal variation, with more CHO in summer than in winter, while CHON exhibited the opposite trend in Beijing and Shanghai. Compared with winter, a lower unsaturation degree, reduced aromaticity, and higher oxidation state of OA in summer were observed in Beijing and Shanghai, while these seasonal variations were not as obvious in Guangzhou, likely due to regional climate differences. The number percentage of common compounds between Beijing and Shanghai was higher than that between Guangzhou and Beijing (or Shanghai). Nitroaromatic compounds were more prevalent in winter than in summer. Further analysis of atmospheric formation relevance and precursor-product pairs suggested that CHON compounds are derived from the oxidization or hydrolyzation processes, revealing potential chemical transformations of these aerosols. This study characterized the chemical makeup of organic aerosols, providing insight into their sources and characteristics in these cities.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00784-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global climate change below 2 °C avoids large end century increases in burned area in Canada 全球气候变化低于 2 °C 可避免加拿大烧毁面积在本世纪末大幅增加
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-01 DOI: 10.1038/s41612-024-00781-4
Salvatore R. Curasi, Joe R. Melton, Vivek K. Arora, Elyn R. Humphreys, Cynthia H. Whaley
{"title":"Global climate change below 2 °C avoids large end century increases in burned area in Canada","authors":"Salvatore R. Curasi, Joe R. Melton, Vivek K. Arora, Elyn R. Humphreys, Cynthia H. Whaley","doi":"10.1038/s41612-024-00781-4","DOIUrl":"10.1038/s41612-024-00781-4","url":null,"abstract":"Wildfire impacts the global carbon cycle, property, harvestable timber, and public health. Canada saw a record fire season in 2023 with 14.9 Mha burned—over seven times the 1986–2022 average of 2.1 Mha. Here we utilize a new process-based wildfire module that explicitly represents fire weather, fuel type and availability, ignition sources, fire suppression, and vegetation’s climate response to project the future of wildfire in Canada. Under rapid climate change (shared socioeconomic pathway [SSP] 370 & 585) simulated annual burned area in the 2090 s reaches 10.2 ± 2.1 to 11.7 ± 2.4 Mha, approaching the 2023 fire season total. However, climate change below a 2 °C global target (SSP126), keeps the 2090 s area burned near modern (2004–2014) norms. The simulated area burned and carbon emissions are most sensitive to climate drivers and lightning but future lightning activity is a key uncertainty.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00781-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear lines trigger heavy rainfalls in the Philippines during the winter monsoon 切变线引发菲律宾冬季季风期间的强降雨
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-10-01 DOI: 10.1038/s41612-024-00780-5
Sheilla Mae Reyes, Seungyeon Lee, Seon Ki Park
{"title":"Shear lines trigger heavy rainfalls in the Philippines during the winter monsoon","authors":"Sheilla Mae Reyes, Seungyeon Lee, Seon Ki Park","doi":"10.1038/s41612-024-00780-5","DOIUrl":"10.1038/s41612-024-00780-5","url":null,"abstract":"Heavy rainfall events (HREs) occur almost throughout the year in the Philippines, with relatively limited research during the winter monsoon. This study analyzes the 20-year (2003–2022) daily precipitation from 55 rain gauges and Integrated Multi-satellitE Retrievals for GPM (IMERG) from November to February. HREs are classified into three clusters by employing a cluster analysis on the most pertinent principal modes extracted from the principal component analysis. Each cluster exhibits a distinct heavy rainfall spatial pattern, mostly showing more than 50 mm/day of rainfall in the eastern part of the country. We noted that heavy rainfall in the Philippines during the winter monsoon occurs during a strong East Asian Winter Monsoon and caused by the interaction of shear line and low-level cyclonic vortex. The different location of rainfall maxima in each HRE cluster is a result of the variation of locations of the shear line and cyclonic vortex.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-15"},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00780-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Citius, altius, fortius” in the face of global warming: not as simple as it seems 面对全球变暖,"Citius、altius、fortius":并不像看上去那么简单
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-09-30 DOI: 10.1038/s41612-024-00774-3
Franck Brocherie, Olivier Girard, Adèle Mornas, Janne Bouten, Grégoire P. Millet
{"title":"“Citius, altius, fortius” in the face of global warming: not as simple as it seems","authors":"Franck Brocherie, Olivier Girard, Adèle Mornas, Janne Bouten, Grégoire P. Millet","doi":"10.1038/s41612-024-00774-3","DOIUrl":"10.1038/s41612-024-00774-3","url":null,"abstract":"In the context of global warming, the reduction in air density, directly driven by rising air temperature, has been identified to enhance athletic anaerobic performance. However, the effect of heat is likely exercise-, intensity- and time-dependent with different physiological mechanisms. It is therefore imperative to clarify some points to not disrupt the disseminated message in order to protect the general population from heat-related illnesses.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-2"},"PeriodicalIF":8.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00774-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid approach for skillful multiseasonal prediction of winter North Pacific blocking 巧妙预测冬季北太平洋阻塞的多季节混合方法
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-09-30 DOI: 10.1038/s41612-024-00767-2
Mingyu Park, Nathaniel C. Johnson, Jaeyoung Hwang, Liwei Jia
{"title":"A hybrid approach for skillful multiseasonal prediction of winter North Pacific blocking","authors":"Mingyu Park, Nathaniel C. Johnson, Jaeyoung Hwang, Liwei Jia","doi":"10.1038/s41612-024-00767-2","DOIUrl":"10.1038/s41612-024-00767-2","url":null,"abstract":"Wintertime atmospheric blocking often brings adverse environmental and socioeconomic impacts through its accompanying temperature and precipitation extremes. However, due to the chaotic nature of the extratropical atmospheric circulation and the challenges in simulating blocking, the skillful seasonal prediction of blocking remains elusive. In this study, we leverage both observational data and seasonal hindcasts from a state-of-the-art seasonal prediction system to investigate the prediction skill of North Pacific wintertime blocking frequency and its linkage to downstream cold extremes. The observational results show that North Pacific blocking has a local maximum over the central North Pacific Ocean and that the occurrence of North Pacific blocking drives significant cold anomalies over northwestern North America within a week, which are both well reproduced by the model. The model skillfully predicts the western North Pacific blocking frequency near the subtropical jet exit region at the shortest forecast lead, but skill drops off rapidly with lead time partly due to model drift in the background flow. To overcome this rapid drop in skill, we develop a linear hybrid dynamical-statistical model that uses the forecasted Niño 3.4 index and upstream precipitation as predictors and that maintains significant forecast skill of high-latitude North Pacific blocking up to 7 lead months in advance. Our results indicate that an improvement in the seasonal prediction skill of winter North Pacific blocking frequency may be achieved by the enhanced representation of the links among sea surface temperature anomalies, tropical convection, and the ensuing tropical-extratropical interaction that initiates North Pacific blocking.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-16"},"PeriodicalIF":8.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00767-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信