npj Climate and Atmospheric Science最新文献

筛选
英文 中文
Impact of Tibetan plateau warming amplification on the interannual variations in East Asia Summer precipitation 青藏高原变暖放大对东亚夏季降水年际变化的影响
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-22 DOI: 10.1038/s41612-025-00920-5
XiaoJing Jia, XinHai Chen, Wei Dong, Hao Ma, JingWen Ge, QiFeng Qian
{"title":"Impact of Tibetan plateau warming amplification on the interannual variations in East Asia Summer precipitation","authors":"XiaoJing Jia, XinHai Chen, Wei Dong, Hao Ma, JingWen Ge, QiFeng Qian","doi":"10.1038/s41612-025-00920-5","DOIUrl":"https://doi.org/10.1038/s41612-025-00920-5","url":null,"abstract":"<p>The amplified warming on the Tibetan Plateau (TA) is a distinctive characteristic of global climate change, leading to various climate responses with far-reaching implications. This study investigates the influence of interannual variation of TA on summer precipitation over East Asia (Pre_EA) using observational data and a Linear Baroclinic Model (LBM). When TA exceeds the Northern Hemisphere average, summer precipitation in the Yangtze River Valley significantly decreases, while it increases in North China and South China, resulting in a tripole Pre_EA pattern. Notably, the relationship between TA and Pre_EA is independent of the El Niño-Southern Oscillation (ENSO) and explains more variance in Pre_EA than ENSO. Our analysis reveals that TA enhances the tripole Pre_EA pattern by modulating moisture transport and vertical motion in the East Asia-North Pacific regions. Specifically, positive TA is linked to significant local tropospheric warming, which intensifies and eastward expands the South Asian High, creating a double-gyre meridional circulation over East Asia. Additionally, positive TA induces an eastward-propagating wave, reinforcing a midlatitude anomalous high-pressure belt over East Asia and the western North Pacific regions. These circulation changes weaken the East Asian subtropical jet, form a notable double jet configuration, and promote subsidence over mid-latitude East Asia. Moreover, anomalously warm sea surface temperatures in the Northwestern Pacific reinforce the TA-Pre_EA relationship by contributing to the mid-latitude East Asia-North Pacific high-pressure belt. Our LBM model experiments support these findings. Our study provides an in-depth understanding of the physical processes influencing summer precipitation variability in East Asia.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"32 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversed link between central pacific ENSO and Greenland–Barents sea ice
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-21 DOI: 10.1038/s41612-025-00912-5
Yuxin Xie, Anmin Duan, Chao Zhang, Chuangzhi He, Qi Mao, Bingxian Liu
{"title":"Reversed link between central pacific ENSO and Greenland–Barents sea ice","authors":"Yuxin Xie, Anmin Duan, Chao Zhang, Chuangzhi He, Qi Mao, Bingxian Liu","doi":"10.1038/s41612-025-00912-5","DOIUrl":"https://doi.org/10.1038/s41612-025-00912-5","url":null,"abstract":"<p>Winter Arctic sea ice is a crucial climate indicator, declining at an accelerated rate compared to the past and playing a significant role in Arctic amplification over recent decades. The sea-ice concentration (SIC) in the Greenland–Barents Sea (GBS) shows considerable interannual variability, yet the link between this variability and the El Niño–Southern Oscillation (ENSO) remains uncertain. Here, we identify a reversed relationship between the autumn Central Pacific (CP)-type ENSO and the winter GBS SIC around the mid-1980s. Observational and model experiments demonstrate that, before the mid-1980s, CP ENSO triggered a double wave pattern propagating toward the Arctic, generating a positive geopotential height anomaly in the Arctic. Such an anomaly, along with a northerly anomaly, favored cold-air advection and intrusion into the GBS, resulting in an increased SIC. After the mid-1980s, however, CP ENSO only induced a single wave train towards the Arctic, favoring a positive geopotential height anomaly over Iceland. As a result, the southerly anomaly transported abundant moisture into the GBS and consequently reduced the SIC. The variation in wave patterns can largely be attributed to the sea surface temperature anomaly in the tropical Atlantic induced by CP ENSO. Our findings highlight the unstable connection between tropical and polar regions, which provides a basis for better understanding the mechanisms of Arctic sea-ice changes.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"45 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation of environmentally persistent free radicals and their contributions to oxidative potential and reactive oxygen species in sea spray and size-resolved ambient particles
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-21 DOI: 10.1038/s41612-025-00911-6
Xinji Zhang, Fanyi Wei, Haiyan Fu, Huibin Guo
{"title":"Characterisation of environmentally persistent free radicals and their contributions to oxidative potential and reactive oxygen species in sea spray and size-resolved ambient particles","authors":"Xinji Zhang, Fanyi Wei, Haiyan Fu, Huibin Guo","doi":"10.1038/s41612-025-00911-6","DOIUrl":"https://doi.org/10.1038/s41612-025-00911-6","url":null,"abstract":"<p>Aerosols, derived from natural processes and human activities, present various risks to the environment and human health. In this regard, the role of recent pollutant environmentally persistent free radicals (EPFRs) should not be overlooked. However, the oxidative toxicity and mass transfer processes of EPFRs in liquid-phase environments remain completely understood. In this study, the dispersion characteristics of EPFRs and their contributions to the oxidation potential (OP) and reactive oxygen species (ROS) in sea spray and size-resolved PM were investigated and compared. The results showed that the sea spray contained fast-decaying C-centred EPFRs with a half-life of 0.32 years. The concentration ranged from 0.3 × 10<sup>13</sup> spins/m<sup>3</sup> to 7.5 × 10<sup>13</sup> spins/m<sup>3</sup>. It increased as the samples approached the coast. Moreover, the size-resolved PM contained slow-decaying O-centred EPFRs with a half-life of 0.51 years. The concentration ranged from 4.57 × 10<sup>13</sup> spins/m<sup>3</sup> to 11.46 × 10<sup>13</sup> spins/m<sup>3</sup>, which was higher than that of most sea spray samples. The interaction between sea spray and water mainly generated hydroxyl free radicals (54 ± 3%), whereas the size-resolved PM mainly generated organic free radicals (64 ± 5%). Correlation analysis revealed that EPFRs may be involved in ROS generation. In addition, the mass transfer of EPFRs between the PM and sea spray may have been controlled by both gas and liquid films. The concentration of EPFRs at the phase interface was calculated to be 4.92 × 10<sup>13</sup> spins/m<sup>3</sup>. In summary, EPFRs positively contribute to OP and ROS production.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"205 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risks and sustainability of outdoor ski resorts in China under climate changes
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-20 DOI: 10.1038/s41612-025-00917-0
Yanqiang Wei, Jing Li, Dongliang Luo, Xuejie Tang, Zihao Wu, Xufeng Wang
{"title":"Risks and sustainability of outdoor ski resorts in China under climate changes","authors":"Yanqiang Wei, Jing Li, Dongliang Luo, Xuejie Tang, Zihao Wu, Xufeng Wang","doi":"10.1038/s41612-025-00917-0","DOIUrl":"https://doi.org/10.1038/s41612-025-00917-0","url":null,"abstract":"<p>Global warming is jeopardizing the artificial snow making conditions, shortening outdoor ski resorts opening days and increasing operation cost, severely threatening the sustainability of outdoor ski industry. The sustainability of 772 outdoor ski resorts in China under RCP 4.5 climate scenarios in 2030 s and 2050 s had been analyzed. (1) The skiing sports developed prominently during 1996 to 2023 and will boom in China in the coming decades. (2) Accelerated global warming is the main threat to the sustainability of outdoor ski resorts of China. However, snowfall isn’t a critical influencing factor in the coming decades. (3) The outdoor ski resorts in south China are facing the most threats and are the most unsustainable resorts. We proposed a nexus of Government-Operator-Skier adaptation framework for adapting climate change threats and advocating the temporal small-scale ski resorts are more adaptive as their high water and energy efficiencies for saving water and electricity resources.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"30 4 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flood modeling prior to the instrumental era reveals limited magnitude of 1931 Yangtze flood
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-19 DOI: 10.1038/s41612-025-00908-1
Ling Zhang, Zhongshi Zhang, Lu Li, Xiaoling Chen, Xijin Wang, Entao Yu, Pratik Kad, Odd Helge Otterå, Chuncheng Guo, Jianzhong Lu, Mingna Wu
{"title":"Flood modeling prior to the instrumental era reveals limited magnitude of 1931 Yangtze flood","authors":"Ling Zhang, Zhongshi Zhang, Lu Li, Xiaoling Chen, Xijin Wang, Entao Yu, Pratik Kad, Odd Helge Otterå, Chuncheng Guo, Jianzhong Lu, Mingna Wu","doi":"10.1038/s41612-025-00908-1","DOIUrl":"https://doi.org/10.1038/s41612-025-00908-1","url":null,"abstract":"<p>The global flood risk urges an improved understanding of flood magnitude and its mechanism, which needs insights from pre-instrumental flood investigations. Due to data scarcity, reconstructing pre-instrumental flood magnitudes relies on statistical downscaling, failing to capture nonlinear and dynamic characteristics. We developed a dynamical approach, NorESM-WRF-SWAT, integrating a global climate, a regional, and a hydrologic model to investigate the 1931 Yangtze River flood (the deadliest in the world) and compared it with the 1998’s. Through validation, our method outperforms the statistical method in simulating precipitations and river discharges. For the first time, we presented detailed insights into the intensity and duration of the 1931 flood, revealing a smaller magnitude but associated with an amplified loss, likely due to social vulnerability and reduced societal resilience compared to the 1998’s. While successful simulation can be interfered with by model variability, our dynamical method shows promise for simulating pre-instrumental flood and building a long-term pre-instrumental-hydrology database.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"532 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excessive equatorial light rain causes modeling dry bias of Indian summer monsoon rainfall
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-18 DOI: 10.1038/s41612-025-00916-1
Gudongze Li, Chun Zhao, Jun Gu, Jiawang Feng, Mingyue Xu, Xiaoyu Hao, Junshi Chen, Hong An, Wenju Cai, Tao Geng
{"title":"Excessive equatorial light rain causes modeling dry bias of Indian summer monsoon rainfall","authors":"Gudongze Li, Chun Zhao, Jun Gu, Jiawang Feng, Mingyue Xu, Xiaoyu Hao, Junshi Chen, Hong An, Wenju Cai, Tao Geng","doi":"10.1038/s41612-025-00916-1","DOIUrl":"https://doi.org/10.1038/s41612-025-00916-1","url":null,"abstract":"<p>Simulating accurately the South Asian summer monsoon is crucial for food security of several South Asian countries yet challenging for global climate models (GCMs). The GCMs suffer from some systematic biases including dry bias in mean monsoon rainfall over the India subcontinent and excessive equatorial light rain between which the relationship was rarely discussed. Numerical experiments are conducted for one month during active monsoon with global quasi-uniform resolution of 60 km (U60 km) and 3 km (U3 km) separately. Evaluation with observations shows that U3 km reduces the dry bias over northern India and excessive light rain over the equatorial Indian Ocean (EIO) that are both prominent in U60 km. Excessive light rain in U60 km contributes critically to stronger rainfall and latent heating over the EIO. A Hadley-type anomalous circulation is thus induced, whose subsidence branch suppresses updrafts and reduces moisture transport into northern India, contributing to the dry bias. The findings highlight the importance of constraining excessive light rain for regional climate projection in GCMs.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"20 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictability of tropical cyclone track density in S2S reforecast
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-18 DOI: 10.1038/s41612-025-00909-0
Chi Lok Loi, Kai-Chih Tseng, Chun-Chieh Wu
{"title":"Predictability of tropical cyclone track density in S2S reforecast","authors":"Chi Lok Loi, Kai-Chih Tseng, Chun-Chieh Wu","doi":"10.1038/s41612-025-00909-0","DOIUrl":"https://doi.org/10.1038/s41612-025-00909-0","url":null,"abstract":"<p>In this study, we examine the predictability of tropical cyclone (TC) track density in the subseasonal-to-seasonal (S2S) reforecast ensembles of the European Centre for Medium-range Weather Forecasts (ECMWF) using the method of average predictability time (APT). Eleven of the retrieved APT modes (APTMs) of TC track density possess an APT longer than 1 week. The most predictable of them, APTM-1, has an APT of almost three weeks and is found to be closely linked to the Boreal Summer Intraseasonal Oscillation (BSISO) and monsoon variability. Another discovery is the strong relationship between APTM-7 and the activity of mixed Rossby-gravity (MRG) waves and tropical depression (TD) type disturbances despite its short APT of ~12 days. We further carry out a simple case analysis to see how the relatively high predictability of APTM-1 manifests in the S2S model. Our work provides a new possibility for improving medium-range TC forecast skill, and has revealed how underlying tropical variability can play a role in determining TC predictability.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"44 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of fine terrain complexity on cloud and precipitation changes over the Tibetan Plateau: a modeling study
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-17 DOI: 10.1038/s41612-025-00907-2
Kai Yang, Jinghua Chen, Tianliang Zhao, Chunsong Lu, Xiangde Xu, Yuehan Luo, Qingjian Yang, Chenghao Tan, Weikang Fu, Ziyue Wang
{"title":"Effects of fine terrain complexity on cloud and precipitation changes over the Tibetan Plateau: a modeling study","authors":"Kai Yang, Jinghua Chen, Tianliang Zhao, Chunsong Lu, Xiangde Xu, Yuehan Luo, Qingjian Yang, Chenghao Tan, Weikang Fu, Ziyue Wang","doi":"10.1038/s41612-025-00907-2","DOIUrl":"https://doi.org/10.1038/s41612-025-00907-2","url":null,"abstract":"<p>Inaccurate characterization of complex topography leads to the wet bias in climate models, particularly affecting terrain effects in regions like the Tibetan Plateau (TP). This study utilizes the Weather Research and Forecasting (WRF) model with multiple terrain datasets and introduces the terrain complexity index (TCI) to quantify the degree of terrain changes, aiming to evaluate how terrain complexity affects the cloud and precipitation processes over the TP. The results indicate that fine terrain complexity primarily causes earlier cloud formation and precipitation, resulting in more heavy precipitation on the southern slope of the TP (SSTP) and more light precipitation on the TP platform. The structure of moisture transport and microphysical processes further reveals that this promotes the formation of more medium and high clouds, increasing the proportion of solid precipitation over the SSTP. Over the TP platform, the restriction of medium and high cloud development with enhancing the proportion of low clouds for more liquid precipitation. These findings deepen the understanding of the TP’s complex terrain effect on cloud and precipitation changes in the Asian water cycle.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"29 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of methods for seasonal particulate organic nitrate estimation in urban areas
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-17 DOI: 10.1038/s41612-025-00904-5
Wenfei Zhu, Jialin Shi, Song Guo, Qinghong Wang, Jun Chen, Shengrong Lou, Min Hu
{"title":"Comparative analysis of methods for seasonal particulate organic nitrate estimation in urban areas","authors":"Wenfei Zhu, Jialin Shi, Song Guo, Qinghong Wang, Jun Chen, Shengrong Lou, Min Hu","doi":"10.1038/s41612-025-00904-5","DOIUrl":"https://doi.org/10.1038/s41612-025-00904-5","url":null,"abstract":"<p>Accurately estimating particulate organic nitrate under high NO<sub>x</sub> and oxidizing conditions is critical. This study compared the NO<sub>x</sub><sup>+</sup> ratio, unconstrained Positive Matrix Factorization (PMF), and Multilinear Engine-2 (ME2) methods to estimate particulate organic nitrate in Shanghai across different seasons. The factors associated with organic nitrate, as identified through two receptor methods, exhibited consistent daily patterns in spring, summer, and autumn, although source contributions varied. The NO<sub>x</sub><sup>+</sup> ratio method reported higher organic nitrate levels than the PMF and ME2 methods, likely due to the fixed R<sub>ON</sub>/R<sub>AN</sub> parameter. Seasonal R<sub>ON</sub>/R<sub>AN</sub> parameters were optimized based on precursor emissions in Shanghai, achieving values of 3.13 in spring, 2.25 in summer, and 1.88 in autumn. This optimization reduced discrepancies in organic nitrate using the NO<sub>x</sub><sup>+</sup> ratio to 3.2–7.4%. The optimized parameters in this study support the rapid and accurate estimation of organic nitrate during different seasons in urban areas.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"39 14 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amplification of Northern Hemisphere winter stationary waves in a warming world
IF 9 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2025-01-17 DOI: 10.1038/s41612-025-00898-0
Jueun Lee, S.-Y. Simon Wang, Seok-Woo Son, Daehyun Kim, Jee-Hoon Jeong, Hyungjun Kim, Jin-Ho Yoon
{"title":"Amplification of Northern Hemisphere winter stationary waves in a warming world","authors":"Jueun Lee, S.-Y. Simon Wang, Seok-Woo Son, Daehyun Kim, Jee-Hoon Jeong, Hyungjun Kim, Jin-Ho Yoon","doi":"10.1038/s41612-025-00898-0","DOIUrl":"https://doi.org/10.1038/s41612-025-00898-0","url":null,"abstract":"<p>This study leverages the Global/Regional Integrated Model system (GRIMs) version 4.0 climate model to examine the mechanisms behind the recent intensification of winter stationary waves over western North America. Prescribed sea surface temperature warming forces a strengthening of westerly winds, amplifying the ridge that characterizes the stationary waves in western North America. The streamfunction budget analysis reveals relative vorticity advection is mainly associated with this process. We further show that ocean warming is the primary driver of changes in westerly winds and stationary waves in the Northern Hemisphere. Sea ice losses exert a considerable effect through a different mechanism, complementing the dominant influence of ocean warming on these atmospheric changes. Our results thus reveal the crucial role tropical oceans play in modulating global warming’s effect on the stationary waves in the Northern Hemisphere and add a more quantitative perspective to the previously reported influence of Arctic amplification.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"30 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信