Rachindra Mawalagedara,Arnob Ray,Puja Das,Jack Watson,Ashis Kumar Pal,Kate Duffy,Udit Bhatia,Daniel P Aldrich,Auroop R Ganguly
{"title":"Non-linear dynamical approaches for characterizing multi-sector climate impacts under irreducible uncertainty.","authors":"Rachindra Mawalagedara,Arnob Ray,Puja Das,Jack Watson,Ashis Kumar Pal,Kate Duffy,Udit Bhatia,Daniel P Aldrich,Auroop R Ganguly","doi":"10.1038/s41612-025-01208-4","DOIUrl":null,"url":null,"abstract":"Internal climate variability (ICV) remains a major source of uncertainty in climate projections, complicating impact assessments across critical sectors, especially at stakeholder-relevant scales. Given that ICV emerges from the nonlinear interactions of the climate system, we argue that nonlinear dynamical (NLD) approaches can improve its characterization, providing physically interpretable insights that strengthen adaptation strategies and support multisector decision-making. However, despite their suitability for such problems, NLD approaches remain largely underutilized in the analysis of initial condition large ensembles (LEs). We argue that a diverse suite of NLD approaches offers a promising pathway for systematically extracting robust insights from LEs. If effectively applied and systematically integrated, these methods could fully harness the potential of LEs, uncovering underlying patterns and variability across ensemble members to refine fundamental insights from climate projections. This will help bridge the gap between complex climate dynamics and practical resilience strategies, ensuring that decision-makers, resource managers, and infrastructure planners have a more reliable foundation for navigating irreducible uncertainty.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"28 1","pages":"329"},"PeriodicalIF":8.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01208-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Internal climate variability (ICV) remains a major source of uncertainty in climate projections, complicating impact assessments across critical sectors, especially at stakeholder-relevant scales. Given that ICV emerges from the nonlinear interactions of the climate system, we argue that nonlinear dynamical (NLD) approaches can improve its characterization, providing physically interpretable insights that strengthen adaptation strategies and support multisector decision-making. However, despite their suitability for such problems, NLD approaches remain largely underutilized in the analysis of initial condition large ensembles (LEs). We argue that a diverse suite of NLD approaches offers a promising pathway for systematically extracting robust insights from LEs. If effectively applied and systematically integrated, these methods could fully harness the potential of LEs, uncovering underlying patterns and variability across ensemble members to refine fundamental insights from climate projections. This will help bridge the gap between complex climate dynamics and practical resilience strategies, ensuring that decision-makers, resource managers, and infrastructure planners have a more reliable foundation for navigating irreducible uncertainty.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.