npj Climate and Atmospheric Science最新文献

筛选
英文 中文
Interdecadal shifts of ENSO influences on Spring Central Asian precipitation 厄尔尼诺/南方涛动对中亚春季降水影响的年代际变化
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-23 DOI: 10.1038/s41612-024-00742-x
Mengyuan Yao, Haosu Tang, Gang Huang, Renguang Wu
{"title":"Interdecadal shifts of ENSO influences on Spring Central Asian precipitation","authors":"Mengyuan Yao, Haosu Tang, Gang Huang, Renguang Wu","doi":"10.1038/s41612-024-00742-x","DOIUrl":"10.1038/s41612-024-00742-x","url":null,"abstract":"Spring Central Asian precipitation (SCAP) holds significant implications for local agriculture and ecosystems, with its variability mainly modulated by El Niño–Southern Oscillation (ENSO). The ENSO–SCAP relationship has experienced pronounced interdecadal shifts, though mechanisms remain elusive. Based on observations and climate model simulations, these shifts may result from transitions in ENSO-induced meridional circulation and Rossby wave trains triggered by North Atlantic (NA) sea surface temperature (SST) anomalies. During high (low) correlation periods, ENSO induces strong (weak) vertical motion anomalies over Central Asia, while NA SST anomalies exert a weak (strong) counteracting effect, modulated by the Pacific decadal oscillation (PDO). In the positive (negative) phase of PDO, a slow (fast) decaying ENSO triggers a strong (weak) NA horseshoe-like SST anomaly in the post-ENSO spring, affecting the ENSO–SCAP relationship. Our study identifies a strengthening trend in the ENSO–SCAP relationship since the 2000s, indicating improved predictability for SCAP in recent decades.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00742-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative humidity driven nocturnal HONO formation mechanism in autumn haze events of Beijing 北京秋季雾霾事件中相对湿度驱动的夜间 HONO 形成机制
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-23 DOI: 10.1038/s41612-024-00745-8
Huiying Xuan, Jun Liu, Yaqi Zhao, Qing Cao, Tianzeng Chen, Yonghong Wang, Zirui Liu, Xu Sun, Hao Li, Peng Zhang, Biwu Chu, Qingxin Ma, Hong He
{"title":"Relative humidity driven nocturnal HONO formation mechanism in autumn haze events of Beijing","authors":"Huiying Xuan, Jun Liu, Yaqi Zhao, Qing Cao, Tianzeng Chen, Yonghong Wang, Zirui Liu, Xu Sun, Hao Li, Peng Zhang, Biwu Chu, Qingxin Ma, Hong He","doi":"10.1038/s41612-024-00745-8","DOIUrl":"10.1038/s41612-024-00745-8","url":null,"abstract":"Nitrous acid (HONO), a key precursor of hydroxyl radicals (OH), is one of the factors affecting atmospheric chemistry and air quality. Currently, the proposed sources of HONO are not able to fully explain observed HONO concentrations. In this study, a comprehensive field observation of HONO was conducted in the autumn of 2021 in urban Beijing. The box model using a default Master Chemical Mechanism (MCM) was unable to reproduce the observed HONO concentrations with a normalized mean bias (NMB) of −92.8%. The NMB improved to −46.1% after the inclusion of seven additional HONO formation pathways. Several factors like vehicle emission factor (1.23%) and nocturnal NO2 heterogeneous uptake coefficient on the ground surface (8.25 × 10−6) were calculated based on observational data. The enhancement factor for nocturnal NO2 heterogeneous conversion was established as a function of relative humidity (RH) and incorporated into the model, which compensated for the missing nocturnal HONO sources and well-reproduced the observed HONO concentrations, with an NMB of −5.1%. The major source of HONO at night was found to be the heterogeneous reaction of NO2 on the ground surface, contributing up to 85.6%. During the daytime, it was the homogeneous reaction of NO with OH, accounting for 41.8%. The daytime primary source of OH was mainly the photolysis of HONO, which constituted 73.6% and therefore promoted the formation of secondary pollutants and exacerbated haze events.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-8"},"PeriodicalIF":8.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00745-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends of peroxyacetyl nitrate and its impact on ozone over 2018–2022 in urban atmosphere 2018-2022 年城市大气中过氧乙酰硝酸盐的变化趋势及其对臭氧的影响
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-22 DOI: 10.1038/s41612-024-00746-7
Ziyi Lin, Lingling Xu, Chen Yang, Gaojie Chen, Xiaoting Ji, Lingjun Li, Keran Zhang, Youwei Hong, Mengren Li, Xiaolong Fan, Baoye Hu, Fuwang Zhang, Jinsheng Chen
{"title":"Trends of peroxyacetyl nitrate and its impact on ozone over 2018–2022 in urban atmosphere","authors":"Ziyi Lin, Lingling Xu, Chen Yang, Gaojie Chen, Xiaoting Ji, Lingjun Li, Keran Zhang, Youwei Hong, Mengren Li, Xiaolong Fan, Baoye Hu, Fuwang Zhang, Jinsheng Chen","doi":"10.1038/s41612-024-00746-7","DOIUrl":"10.1038/s41612-024-00746-7","url":null,"abstract":"Peroxyacetyl nitrate (PAN) is an important photochemical product and affects ozone (O3) formation in the troposphere. Yet, the long-term observation of PAN remains scarce, limiting the full understanding of its impacts on photochemical pollution. Here, we observed PAN from 2018 to 2022 in urban Fuzhou, Southeastern China. We found that, in contrast to upward trend of O3, PAN concentrations shown a significant decreasing trend at an average rate of −0.07 ppb/year. NO2, CO, UVB, and T contributed to the decreasing trend of PAN according to Machine learning analyses, while the effect of O3-represented atmospheric oxidation capacity on PAN was fluctuating from year to year. Chemical box model revealed active PA production and depletion in Fuzhou. Thus, despite the decreasing PAN concentration, PAN chemistry effectively promoted O3 formation by rising ROx levels, leading to increases of 2.18%–58.4% in net O3 production rate in different years. Our results provide valuable insights into the evolution of photochemical pollution in urban environments.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00746-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hailstone size dichotomy in a warming climate 气候变暖下的冰雹大小二分法
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-21 DOI: 10.1038/s41612-024-00728-9
Vittorio A. Gensini, Walker S. Ashley, Allison C. Michaelis, Alex M. Haberlie, Jillian Goodin, Brendan C. Wallace
{"title":"Hailstone size dichotomy in a warming climate","authors":"Vittorio A. Gensini, Walker S. Ashley, Allison C. Michaelis, Alex M. Haberlie, Jillian Goodin, Brendan C. Wallace","doi":"10.1038/s41612-024-00728-9","DOIUrl":"10.1038/s41612-024-00728-9","url":null,"abstract":"Hailstorms are analyzed across the United States using explicit hailstone size calculations from convection-permitting regional climate simulations for historical, mid-century, and end of twenty-first-century epochs. Near-surface hailstones <4 cm are found to decrease in frequency by an average of 25%, whereas the largest stones are found to increase by 15–75% depending on the greenhouse gas emissions pathway. Decreases in the frequency of near-surface severe hail days are expected across the U.S. High Plains, with 2–4 fewer days projected—primarily in summer. Column-maximum severe hail days are projected to increase robustly in most locations outside of the southern Plains, a distribution that closely mimics projections of thunderstorm days. Primary mechanisms for the changes in hailstone size are linked to future environments supportive of greater instability opposed by thicker melting layers. This results in a future hailstone size dichotomy, whereby stronger updrafts promote more of the largest hailstones, but significant decreases occur for a majority of smaller diameters due to increased melting.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00728-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex interplay of sulfate aerosols and meteorology conditions on precipitation and latent heat vertical structure 硫酸盐气溶胶和气象条件对降水和潜热垂直结构的复杂相互作用
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-21 DOI: 10.1038/s41612-024-00743-w
Hongxia Zhu, Shuping Yang, Hongwei Zhao, Yu Wang, Rui Li
{"title":"Complex interplay of sulfate aerosols and meteorology conditions on precipitation and latent heat vertical structure","authors":"Hongxia Zhu, Shuping Yang, Hongwei Zhao, Yu Wang, Rui Li","doi":"10.1038/s41612-024-00743-w","DOIUrl":"10.1038/s41612-024-00743-w","url":null,"abstract":"An eight-year satellite observation dataset reveals that sulfate aerosols significantly influence the vertical structure of precipitation and latent heat (LH) in the Beijing-Tianjin-Hebei (BTH) region during summer. In this period, prevalent sulfate aerosols combine with warm, humid southerly winds and elevated convective available potential energy (CAPE), influencing precipitation dynamics. Under polluted conditions with specific CAPE and precipitation top temperature (PTT) ranges, precipitation particles experience accelerated growth within the mixed-phase layer, delineated by the −5 °C to 2 °C isotherms, compared to pristine environments. This results in a marked increase in both the intensity and height at which the maximum LH is released. Subsequent analysis reveals that hygroscopic sulfate aerosols, acting as cloud condensation nuclei (CCN), amplify the collision-coalescence process within the mixed layer amid high cloud water content, propelling rapid precipitation particle growth and elevating the PTT. This warming effect surpasses the cooling contribution from robust CAPE, culminating in a net elevation of PTT under polluted scenarios compared to pristine ones. Additionally, quantification of PTT sensitivity to both CAPE and aerosol optical depth (AOD) unveils a high consistency between satellite-detected PTT responses to CAPE and those predicted by cloud-resolving model simulations. The study deduces that the role of aerosols as CCN in either invigorating or diminishing the collision-coalescence process is contingent on the available cloud water.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00743-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142022001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The new indices to describe temporal discontinuity of snow cover on the Qinghai-Tibet Plateau 描述青藏高原雪盖时间不连续性的新指数
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-20 DOI: 10.1038/s41612-024-00733-y
Jing Wang, Lin Tang, Heng Lu
{"title":"The new indices to describe temporal discontinuity of snow cover on the Qinghai-Tibet Plateau","authors":"Jing Wang, Lin Tang, Heng Lu","doi":"10.1038/s41612-024-00733-y","DOIUrl":"10.1038/s41612-024-00733-y","url":null,"abstract":"Snow cover on the Qinghai-Tibet Plateau significantly impacts the climate, hydrology, and ecology of China and East Asia. Current studies mainly use snow cover days to describe its duration, overlooking the snow’s discontinuous nature. This study analyzes snow phenology and the spatiotemporal distribution of continuous snow cover events on the Qinghai-Tibet Plateau from 1961 to 2019. The findings indicate that continuous snow cover days better capture the temporal discontinuity of snow cover compared to snow cover days. The contribution and continuity are lower than regions like North America, Europe, Northeast and Xinjiang in China, indicating poorer snow cover continuity on the Qinghai-Tibet Plateau. Additionally, we found that temperature and precipitation, especially autumn temperatures and spring and winter precipitation, significantly impact various snow indices. Wind speed also significantly impacts snow cover, particularly in autumn. Atmospheric circulation indirectly affects the snow cover discontinuity by influencing temperature and precipitation.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-15"},"PeriodicalIF":8.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00733-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol effects during heat waves in summer 2022 and responses to emission change over China 2022 年夏季热浪期间的气溶胶效应以及对中国上空排放变化的响应
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-20 DOI: 10.1038/s41612-024-00744-9
Mingjie Liang, Zhiwei Han, Jiawei Li, Yue Li, Lin Liang
{"title":"Aerosol effects during heat waves in summer 2022 and responses to emission change over China","authors":"Mingjie Liang, Zhiwei Han, Jiawei Li, Yue Li, Lin Liang","doi":"10.1038/s41612-024-00744-9","DOIUrl":"10.1038/s41612-024-00744-9","url":null,"abstract":"This study explores aerosol direct, indirect, and feedback effects on meteorology and fine particulate matter during heat waves of August 2022 over eastern China by using an online coupled regional climate–chemistry–aerosol model. In this period, aerosols exerted mean direct (DRE) and indirect (IRE) radiative effects of −3.9 Wm−2 and −2.4 Wm−2 at TOA, which totally caused a decrease in average surface air temperature by 0.3 °C over east China, accompanied by decreases in PBLH (planetary boundary layer height) and precipitation and an increase in PM2.5 concentration. With the anthropogenic emission reduction from 2013 to 2022, DRE apparently decreased while IRE changed little, leading to a decrease in total aerosol radiative effect (TRE) by 27% at TOA. The weakened TRE resulted in increases in surface air temperature and precipitation by 0.14 °C and 2.7 mm, respectively, on average over east China, with the maximum warming exceeding 0.5 °C in BTH (Beijing–Tianjin–Hebei province). This study highlights a warming trend due to weakened TRE, which may exacerbate heat wave, and an increasing importance of aerosol IRE relative to DRE due to weak sensitivity of cloud properties to aerosol change during the emission reduction.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00744-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected changes in extreme hot summer events in Asian monsoon regions 亚洲季风区夏季极端高温事件的预测变化
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-16 DOI: 10.1038/s41612-024-00734-x
Reshmita Nath, Debashis Nath, Wen Chen
{"title":"Projected changes in extreme hot summer events in Asian monsoon regions","authors":"Reshmita Nath, Debashis Nath, Wen Chen","doi":"10.1038/s41612-024-00734-x","DOIUrl":"10.1038/s41612-024-00734-x","url":null,"abstract":"40% of global population, who resides in Asian monsoon region is at high risk from extreme hot summer events, which is expected to increase by 25%/30 years under RCP8.5 scenario. Using Community Earth System Model (CESM) Large-ensemble simulations we assess the relative contribution of external forcings and internal variability on hot extremes over South and East Asia. Climate change projects surface mean temperature to reach 2.0 °C and 5.0 °C by ~2050 and ~2100, respectively, making the region uninhabitable under exposed conditions. Internal variability will partly obscure anthropogenic warming over South and Southeast Asia; however, East Asia will experience a 4–6 fold rise in record breaking hot events in later periods. Nevertheless, beyond 2.35 °C warming internal variability will decrease over South Asia due to weaker albedo feedback on unforced internal variability. Our results contradict the existing hypothesis that warming will increase volatility in weather patterns everywhere, particularly the Asian monsoon regions.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00734-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global latitudinal patterns in forest ecosystem nitrous oxide emissions are related to hydroclimate 森林生态系统氧化亚氮排放的全球纬度模式与水文气候有关
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-15 DOI: 10.1038/s41612-024-00737-8
Jiayuan Liao, Wei Zheng, Qiong Liao, Sheng Lu
{"title":"Global latitudinal patterns in forest ecosystem nitrous oxide emissions are related to hydroclimate","authors":"Jiayuan Liao, Wei Zheng, Qiong Liao, Sheng Lu","doi":"10.1038/s41612-024-00737-8","DOIUrl":"10.1038/s41612-024-00737-8","url":null,"abstract":"Nitrous oxide (N2O) emissions are a serious global issue, with substantial evidence indicating that hydroclimate processes significantly contribute to these emissions. Forests, covering one-third of global land, are key in the water cycle and influence hydroclimate processes, which vary with climate, latitude, and forest types. The role of hydroclimate in regulating global forest N2O emission remains largely unknown. Our global analysis shows that hydroclimate factors dominate the latitudinal gradient of forest N2O fluxes, which decrease with latitude. N2O fluxes are highest in tropical forests, followed by temperate and boreal forests. Hydroclimate factors contribute 78.2% to N2O fluxes, while soil factors contribute 21.8%. Our results urgently call for future studies to investigate the relationship between N2O flux and hydroclimate factors like radiation, evapotranspiration, and vapor pressure deficits. Collectively, these findings highlight hydroclimate significant impact on N2O emissions and suggest incorporating these factors into predictive models for greater accuracy.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00737-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Enhanced formation of nitrogenous organic aerosols and brown carbon after aging in the planetary boundary layer 作者更正:行星边界层老化后含氮有机气溶胶和褐碳的形成增强
IF 8.5 1区 地球科学
npj Climate and Atmospheric Science Pub Date : 2024-08-14 DOI: 10.1038/s41612-024-00740-z
Yangzhou Wu, Quan Liu, Dantong Liu, Ping Tian, Weiqi Xu, Junfeng Wang, Kang Hu, Siyuan Li, Xiaotong Jiang, Fei Wang, Mengyu Huang, Deping Ding, Chenjie Yu, Dawei Hu
{"title":"Author Correction: Enhanced formation of nitrogenous organic aerosols and brown carbon after aging in the planetary boundary layer","authors":"Yangzhou Wu, Quan Liu, Dantong Liu, Ping Tian, Weiqi Xu, Junfeng Wang, Kang Hu, Siyuan Li, Xiaotong Jiang, Fei Wang, Mengyu Huang, Deping Ding, Chenjie Yu, Dawei Hu","doi":"10.1038/s41612-024-00740-z","DOIUrl":"10.1038/s41612-024-00740-z","url":null,"abstract":"","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-1"},"PeriodicalIF":8.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00740-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信