Toward a unified parameterization of three dimensional turbulent transport in high resolution numerical weather prediction models

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Ping Zhu, Kwun Yip. Fung, Xuejin Zhang, Jun A. Zhang, Jian-Wen Bao, Chuan-Kai Wang, Bin Liu, Zhan Zhang, Lucas Harris, Kun Gao, Fanglin Yang, Jongil Han, Weiguo Wang
{"title":"Toward a unified parameterization of three dimensional turbulent transport in high resolution numerical weather prediction models","authors":"Ping Zhu, Kwun Yip. Fung, Xuejin Zhang, Jun A. Zhang, Jian-Wen Bao, Chuan-Kai Wang, Bin Liu, Zhan Zhang, Lucas Harris, Kun Gao, Fanglin Yang, Jongil Han, Weiguo Wang","doi":"10.1038/s41612-025-01117-6","DOIUrl":null,"url":null,"abstract":"<p>In numerical weather prediction (NWP) models, horizontal and vertical turbulent mixing is parameterized separately within the dynamic solver of a model and by a one-dimensional standalone module outside the dynamic core. This method becomes problematic as model resolution increases to the gray zone of turbulence parameterization where three-dimensional (3D) anisotropic turbulence tends to generate inter-connected horizontal and vertical mixing that cannot be artificially separated. To remediate the problem, a 3D scale-aware (SA) turbulence scheme based on a generalized turbulence closure applicable across scales has been developed and implemented in the Hurricane Analysis and Forecast System (HAFS). Simulations of 11 Atlantic basin storms of 2024 show that the new scheme substantially improves HAFS’s forecasting skill for storms with hurricane strength, suggesting that an appropriate account for 3D anisotropic turbulent transport is important for track and intensity forecast of tropical cyclones and provides a venue for realistically representing sub-grid-scale turbulence in NWP.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"51 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01117-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In numerical weather prediction (NWP) models, horizontal and vertical turbulent mixing is parameterized separately within the dynamic solver of a model and by a one-dimensional standalone module outside the dynamic core. This method becomes problematic as model resolution increases to the gray zone of turbulence parameterization where three-dimensional (3D) anisotropic turbulence tends to generate inter-connected horizontal and vertical mixing that cannot be artificially separated. To remediate the problem, a 3D scale-aware (SA) turbulence scheme based on a generalized turbulence closure applicable across scales has been developed and implemented in the Hurricane Analysis and Forecast System (HAFS). Simulations of 11 Atlantic basin storms of 2024 show that the new scheme substantially improves HAFS’s forecasting skill for storms with hurricane strength, suggesting that an appropriate account for 3D anisotropic turbulent transport is important for track and intensity forecast of tropical cyclones and provides a venue for realistically representing sub-grid-scale turbulence in NWP.

Abstract Image

高分辨率数值天气预报模式中三维湍流输送的统一参数化研究
在数值天气预报(NWP)模式中,水平和垂直湍流混合分别在模式的动态求解器内和在动态核心外的一维独立模块中参数化。当模型分辨率增加到湍流参数化的灰色地带时,这种方法就会出现问题,因为三维(3D)各向异性湍流往往会产生相互连接的水平和垂直混合,无法人为分离。为了解决这个问题,一种基于适用于不同尺度的广义湍流闭合的三维尺度感知(SA)湍流方案已被开发并在飓风分析和预报系统(HAFS)中实施。对2024年11次大西洋盆地风暴的模拟结果表明,新方案大大提高了HAFS对飓风强度风暴的预报能力,表明适当考虑三维各向异性湍流输送对热带气旋的路径和强度预报具有重要意义,并为实际反映NWP亚网尺度湍流提供了场所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信