{"title":"探索为低成本传感器网络提供RH校正的实用方法","authors":"Savinda Arambawatta Lekamge, Henry P. Oswin","doi":"10.1038/s41612-025-01115-8","DOIUrl":null,"url":null,"abstract":"<p>Low-cost PM<sub>2.5</sub> sensors have been deployed extensively for high spatio-temporal resolution air quality monitoring. However, environmental factors, especially relative humidity (RH), cause discrepancies for low-cost sensors when compared with regulatory-grade instruments. Developing methods of correcting or accounting for this RH discrepancy is therefore key to attaining data from low-cost air quality sensors, which can be used to monitor compliance with global air quality guidelines. Here, we developed a simple aerosol dryer and placed a pair of Plantower PMS7003 sensors before and after it, continuously monitoring the impact of drying on the reported particle mass concentrations. During the monitoring period, drying reduced the reported mass concentration for Brisbane’s PM<sub>2.5</sub> by 25–40%. This measured drying effect was then used to calculate a real-time RH correction factor, enabling adjustment of particle mass concentrations reported by a sensor network, accounting for fluctuations in RH and the contribution of hygroscopic sources to ambient PM<sub>2.5</sub>.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"14 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of a practical approach to providing RH corrections to low cost sensor networks\",\"authors\":\"Savinda Arambawatta Lekamge, Henry P. Oswin\",\"doi\":\"10.1038/s41612-025-01115-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-cost PM<sub>2.5</sub> sensors have been deployed extensively for high spatio-temporal resolution air quality monitoring. However, environmental factors, especially relative humidity (RH), cause discrepancies for low-cost sensors when compared with regulatory-grade instruments. Developing methods of correcting or accounting for this RH discrepancy is therefore key to attaining data from low-cost air quality sensors, which can be used to monitor compliance with global air quality guidelines. Here, we developed a simple aerosol dryer and placed a pair of Plantower PMS7003 sensors before and after it, continuously monitoring the impact of drying on the reported particle mass concentrations. During the monitoring period, drying reduced the reported mass concentration for Brisbane’s PM<sub>2.5</sub> by 25–40%. This measured drying effect was then used to calculate a real-time RH correction factor, enabling adjustment of particle mass concentrations reported by a sensor network, accounting for fluctuations in RH and the contribution of hygroscopic sources to ambient PM<sub>2.5</sub>.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01115-8\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01115-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Exploration of a practical approach to providing RH corrections to low cost sensor networks
Low-cost PM2.5 sensors have been deployed extensively for high spatio-temporal resolution air quality monitoring. However, environmental factors, especially relative humidity (RH), cause discrepancies for low-cost sensors when compared with regulatory-grade instruments. Developing methods of correcting or accounting for this RH discrepancy is therefore key to attaining data from low-cost air quality sensors, which can be used to monitor compliance with global air quality guidelines. Here, we developed a simple aerosol dryer and placed a pair of Plantower PMS7003 sensors before and after it, continuously monitoring the impact of drying on the reported particle mass concentrations. During the monitoring period, drying reduced the reported mass concentration for Brisbane’s PM2.5 by 25–40%. This measured drying effect was then used to calculate a real-time RH correction factor, enabling adjustment of particle mass concentrations reported by a sensor network, accounting for fluctuations in RH and the contribution of hygroscopic sources to ambient PM2.5.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.