Nutritional Neuroscience最新文献

筛选
英文 中文
Neuroprotective effects of brown rice consumption in an iron-induced parkinsonism in Drosophila. 食用糙米对铁诱导的果蝇帕金森症的神经保护作用
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-05 DOI: 10.1080/1028415X.2024.2399988
Yaaqub Abiodun Uthman, Kasimu Ghandi Ibrahim, Murtala Bello Abubakar, Ismail Sulaiman, Mustapha Umar Imam
{"title":"Neuroprotective effects of brown rice consumption in an iron-induced parkinsonism in Drosophila.","authors":"Yaaqub Abiodun Uthman, Kasimu Ghandi Ibrahim, Murtala Bello Abubakar, Ismail Sulaiman, Mustapha Umar Imam","doi":"10.1080/1028415X.2024.2399988","DOIUrl":"https://doi.org/10.1080/1028415X.2024.2399988","url":null,"abstract":"<p><strong>Objectives: </strong>Iron (Fe) accumulation and resultant oxidative stress play a significant role in the neuronal death observed in Parkinson's disease (PD). Brown rice (BR) possesses antioxidant properties able to reduce cellular oxidative damage. Thus, we hypothesized that BR may ameliorate Fe-induced parkinsonism due to oxidative stress.</p><p><strong>Methods: </strong>Two - to three-day-old male flies were concurrently exposed to Fe (ferrous sulphate, 1 mM) and interventions, divided into eight groups: control; Fe; BR; white rice (WR); L-dopa (1 mM); Fe (1 mM) + BR; Fe (1 mM) + WR; and Fe (1 mM) + L-dopa (1 mM). The flies were exposed for 15 days to their respective diets, and their behavior, relevant biomarkers, and the expression of related genes were evaluated.</p><p><strong>Results: </strong>Chronic exposure to Fe caused cognitive and locomotor deficits by increasing Fe levels <i>(p</i> = 0.027) in flies' heads, as well as heightened aggression and grooming episodes (<i>p</i> < 0.001). The elevated iron levels induced changes consistent with oxidative stress, evidenced by increased MDA levels (<i>p</i> < 0.001), and reduced activity of catalase (<i>p</i> < 0.001) and glutathione peroxidase (GPx) (<i>p</i> < 0.001), along with decreased dopamine levels (<i>p</i> < 0.001). Additionally, there was dysregulation in the mRNA expression of malvolio, ferritin, Nrf2, DJ-1, GPx, and catalase (<i>p</i> < 0.05). BR prevented the Fe-induced effects (Fe + BR group) even more effectively than L-Dopa (<i>p</i> < 0.001).</p><p><strong>Conclusion: </strong>The findings indicate that BR has the potential to mitigate Fe-induced ROS-mediated damage in a Drosophila model of PD-like disease by modulating key players in the Nrf2 signaling pathway.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of the modified Atkins diet and anti-seizure medications on lipid marker levels in adults with epilepsy. 改良阿特金斯饮食和抗癫痫药物对成人癫痫患者血脂标志物水平的影响。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-04 DOI: 10.1080/1028415X.2024.2397624
Ashley L Muller, Luisa Diaz-Arias, Mackenzie C Cervenka, Tanya J W McDonald
{"title":"The effect of the modified Atkins diet and anti-seizure medications on lipid marker levels in adults with epilepsy.","authors":"Ashley L Muller, Luisa Diaz-Arias, Mackenzie C Cervenka, Tanya J W McDonald","doi":"10.1080/1028415X.2024.2397624","DOIUrl":"https://doi.org/10.1080/1028415X.2024.2397624","url":null,"abstract":"<p><strong>Objectives: </strong>Some anti-seizure medications (ASMs) are known to induce liver enzymes and impact lipid values that include total cholesterol (TC), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglyceride (TG). In addition, use of ketogenic diet therapies, including the modified Atkins diet (MAD), has also influenced lipids. Here, we explored the combined impact of enzyme inducing ASMs (EIASMs) and MAD on lipid values in adults with epilepsy.</p><p><strong>Methods: </strong>Diet-naïve adults with epilepsy who began MAD were divided into three groups based on ASM use: EIASMs, non-EIASMs, and those on no ASMs. Demographic information, epilepsy-specific clinical history, anthropometrics and lipid values were obtained through retrospective chart review at baseline and after a minimum of 12 months of MAD use.</p><p><strong>Results: </strong>Forty-two adults on MAD had baseline and follow up 12-month lipid outcomes. There was a significant increase in median levels of TC, LDL, non-HDL, and HDL after 12 months of MAD use. There was no change in median levels of TG. When separated according to ASM category, adults on non-EIASMs showed significant elevations in TC, HDL, and LDL after 12 months of MAD use. In contrast, adults on EIASMs only showed a significant increase in HDL after 12 months of MAD use.</p><p><strong>Discussion: </strong>The increase in atherogenic cholesterol levels observed after 12 months of MAD use was most pronounced in adults with epilepsy on non-EIASMs and not observed in adults with epilepsy on EIASMs despite a higher proportion of abnormal cholesterol levels at baseline in those on EIASMs.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-10"},"PeriodicalIF":3.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal dietary deficiencies in folic acid or choline reduce primary neuron viability after exposure to hypoxia through increased levels of apoptosis. 母体膳食中叶酸或胆碱的缺乏会增加细胞凋亡水平,从而降低原发性神经元在缺氧情况下的存活率。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-04 DOI: 10.1080/1028415X.2024.2398365
Alice Yaldiko, Sarah Coonrod, Purvaja Marella, Lauren Hurley, Nafisa M Jadavji
{"title":"Maternal dietary deficiencies in folic acid or choline reduce primary neuron viability after exposure to hypoxia through increased levels of apoptosis.","authors":"Alice Yaldiko, Sarah Coonrod, Purvaja Marella, Lauren Hurley, Nafisa M Jadavji","doi":"10.1080/1028415X.2024.2398365","DOIUrl":"https://doi.org/10.1080/1028415X.2024.2398365","url":null,"abstract":"<p><p><b>Objective</b>: Ischemic stroke is the leading cause of death and disability globally. By addressing modifiable risk factors, particularly nutrition, the prevalence of stroke and its dire consequences can be mitigated. One-carbon (1C) metabolism is a critical biosynthetic process that is involved in neural tube closure, DNA synthesis, plasticity, and cellular proliferation. Folates and choline are two active components of 1C metabolism. We have previously demonstrated that maternal dietary deficiencies during pregnancy and lactation in folic acid or choline result in worse stroke outcomes in offspring. However, there is insufficient data to understand the neuronal mechanisms involved.<b>Methods:</b> Using C57Bl/6J female mice maintained on control, folic acid (0.3 mg/kg) or choline (choline bitrate 300 mg/kg) deficient diets we collected embryonic primary neurons from offspring and exposed them to hypoxic conditions for 6 hours. To determine whether increased levels of either folic acid or choline can rescue reduced neuronal viability, we supplemented cell media with folic acid and choline prior to and after exposure to hypoxia.<b>Results:</b> Our results suggest that maternal dietary deficiencies in either folic acid or choline during pregnancy negatively impacts offspring neuronal viability after hypoxia. Furthermore, increasing levels of folic acid (250 mg/ml) or choline chloride (250 mg/ml) prior to and after hypoxia have a beneficial impact on neuronal viability.<b>Conclusion:</b> The findings contribute to our understanding of the intricate interplay between maternal dietary factors, 1C metabolism, and the outcome of offspring to hypoxic events, emphasizing the potential for nutritional interventions in mitigating adverse outcomes.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. 研究橙皮甙和柚皮甙对阿尔茨海默病的保护作用的基本方法。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-03 DOI: 10.1080/1028415X.2024.2397136
Müjgan Kuşi, Eda Becer, Hafize Seda Vatansever
{"title":"Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease.","authors":"Müjgan Kuşi, Eda Becer, Hafize Seda Vatansever","doi":"10.1080/1028415X.2024.2397136","DOIUrl":"https://doi.org/10.1080/1028415X.2024.2397136","url":null,"abstract":"<p><strong>Objectives: </strong>Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases.</p><p><strong>Methods: </strong>In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized.</p><p><strong>Results: </strong>Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD.</p><p><strong>Discussion: </strong>There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-13"},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-hydroxybutyrate and mitochondria mediate the association between medium-chain fatty acids, DHA and mild cognitive impairment: a nested case-control study. β-羟丁酸和线粒体介导中链脂肪酸、DHA与轻度认知障碍之间的关系:一项巢式病例对照研究。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-03 DOI: 10.1080/1028415X.2024.2398364
Tong Yang, Huilian Duan, Yuan Li, Ning Xu, Zehao Wang, Zhenshu Li, Yongjie Chen, Yue Du, Meilin Zhang, Jing Yan, Changqing Sun, Guangshun Wang, Wen Li, Xin Li, Fei Ma, Guowei Huang
{"title":"β-hydroxybutyrate and mitochondria mediate the association between medium-chain fatty acids, DHA and mild cognitive impairment: a nested case-control study.","authors":"Tong Yang, Huilian Duan, Yuan Li, Ning Xu, Zehao Wang, Zhenshu Li, Yongjie Chen, Yue Du, Meilin Zhang, Jing Yan, Changqing Sun, Guangshun Wang, Wen Li, Xin Li, Fei Ma, Guowei Huang","doi":"10.1080/1028415X.2024.2398364","DOIUrl":"https://doi.org/10.1080/1028415X.2024.2398364","url":null,"abstract":"<p><strong>Background: </strong>Medium-chain fatty acids (MCFAs) and docosahexaenoic acid (DHA) could affect the occurrence of mild cognitive impairment (MCI). β-hydroxybutyrate (BHB), mitochondrial DNA copy number (mtDNAcn) and mitochondrial DNA (mtDNA) deletions might be their potential mechanisms. This study aimed to explore the relationship between MCFAs, DHA and MCI, and potential mechanisms.</p><p><strong>Methods: </strong>This study used data from Tianjin Elderly Nutrition and Cognition (TENC) cohort study, 120 individuals were identified with new onset MCI during follow-up, 120 individuals without MCI were selected by 1:1 matching sex, age, and education levels as the control group from TENC. Conditional logistic regression analysis and mediation effect analysis were used to explore their relationship.</p><p><strong>Results: </strong>Higher serum octanoic acid levels (OR: 0.633, 95% CI: 0.520, 0.769), higher serum DHA levels (OR: 0.962, 95% CI: 0.942, 0.981), and more mtDNAcn (OR: 0.436, 95% CI: 0.240, 0.794) were associated with lower MCI risk, while more mtDNA deletions was associated with higher MCI risk (OR: 8.833, 95% CI: 3.909, 19.960). Mediation analysis suggested that BHB and mtDNAcn, in series, have mediation roles in the association between octanoic acid and MCI risk, and mtDNA deletions have mediation roles in the association between DHA and MCI risk.</p><p><strong>Conclusion: </strong>Higher serum octanoic acid and DHA levels were associated with lower MCI risk. Octanoic acid could affect the incidence of MCI through BHB, then mitochondria function, or through mitochondria function, or directly. Serum DHA level could affect the incidence of MCI through mitochondria function, or directly.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-10"},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of perinatal dietary protein deficiency on some neurochemicals and cytoarchitectural balance, in F1 and F2 generations of rats. 围产期饮食蛋白质缺乏对F1和F2代大鼠神经化学物质和细胞结构平衡的影响。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-01 Epub Date: 2023-11-23 DOI: 10.1080/1028415X.2023.2285085
Nosarieme Omoregie Abey, Osaretin Albert Taiwo Ebuehi, Ngozi Awa Imaga
{"title":"Effect of perinatal dietary protein deficiency on some neurochemicals and cytoarchitectural balance, in F1 and F2 generations of rats.","authors":"Nosarieme Omoregie Abey, Osaretin Albert Taiwo Ebuehi, Ngozi Awa Imaga","doi":"10.1080/1028415X.2023.2285085","DOIUrl":"10.1080/1028415X.2023.2285085","url":null,"abstract":"<p><p>Protein deficiency, characterized by an inadequate intake of protein in the diet that fails to meet the body's physiological requirements across various stages, can lead to detrimental outcomes. This is of interest due to the persistent low protein content in staple foods and suboptimal dietary patterns. The study sought to assess the intergenerational repercussions of dietary protein deficiency on specific neurochemicals and the cytoarchitecture of the brain within the F1 and F2 generations of rats. The rats were categorized into four groups based on the protein content percentage in their diets: 21% protein diet (21%PD), 10% protein diet (10%PD), 5% protein diet (5%PD), and control diet. Neurobehavior was assessed, while brain serotonin and dopamine levels were measured using HPLC. BDNF and GDNF expression in the hippocampal and prefrontal (PFC) sections, Immunohistochemical investigations of the morphological impact on the hippocampus and PFC, were also analyzed. The protein-deficient groups displayed anxiety, loss of striatal serotonin and increased dopamine levels, degenerated pyramidal cells in the hippocampus, and a prominent reduction in cellular density in the PFC. BDNF and GDNF levels in the PFC were reduced in the 5%PD group. GFAP astrocyte expression was observed to be increased in the prefrontal cortex (PFC) and hippocampal sections, indicating heightened reactivity. The density of hypertrophied cells across generations further suggests the presence of neuroinflammation. Changes in brain structure, neurotransmitter levels, and neurotrophic factor levels may indicate intergenerational alterations in critical regions, potentially serving as indicators of the brain's adaptive response to address protein deficiency across successive generations.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"962-977"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? 膳食多酚保护人体免受衰老和神经退行性病变的潜力:肠道微生物群的作用?
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-01 Epub Date: 2024-01-29 DOI: 10.1080/1028415X.2023.2298098
F C Ross, D E Mayer, J Horn, J F Cryan, D Del Rio, E Randolph, C I R Gill, A Gupta, R P Ross, C Stanton, E A Mayer
{"title":"Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota?","authors":"F C Ross, D E Mayer, J Horn, J F Cryan, D Del Rio, E Randolph, C I R Gill, A Gupta, R P Ross, C Stanton, E A Mayer","doi":"10.1080/1028415X.2023.2298098","DOIUrl":"10.1080/1028415X.2023.2298098","url":null,"abstract":"<p><p>Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1058-1076"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review. 黄酮类化合物和 BDNF 对包括缺血性损伤在内的各种生理/病理状况下神经源过程的影响:综述。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-01 Epub Date: 2023-12-27 DOI: 10.1080/1028415X.2023.2296165
Esen Yılmaz, Saltuk Bugra Baltaci, Rasim Mogulkoc, Abdulkerim Kasım Baltaci
{"title":"The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review.","authors":"Esen Yılmaz, Saltuk Bugra Baltaci, Rasim Mogulkoc, Abdulkerim Kasım Baltaci","doi":"10.1080/1028415X.2023.2296165","DOIUrl":"10.1080/1028415X.2023.2296165","url":null,"abstract":"<p><strong>Objective: </strong>Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults.</p><p><strong>Aim: </strong>This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular.</p><p><strong>Method: </strong>Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database.</p><p><strong>Conclusions: </strong>The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1025-1041"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-adjusted dietary inflammatory index and cognitive function in Chinese older adults: a population-based cross-sectional study. 中国老年人能量调节饮食炎症指数和认知功能:一项基于人群的横断面研究。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-01 Epub Date: 2023-11-22 DOI: 10.1080/1028415X.2023.2285537
Lili Chen, Jinxiu Liu, Xiuli Li, Zhaoyi Hou, Yongbao Wei, Mingfeng Chen, Bixia Wang, Huizhen Cao, Rongyan Qiu, Yuping Zhang, Xinli Ji, Ping Zhang, Mianxiang Xue, Linlin Qiu, Linlin Wang, Hong Li
{"title":"Energy-adjusted dietary inflammatory index and cognitive function in Chinese older adults: a population-based cross-sectional study.","authors":"Lili Chen, Jinxiu Liu, Xiuli Li, Zhaoyi Hou, Yongbao Wei, Mingfeng Chen, Bixia Wang, Huizhen Cao, Rongyan Qiu, Yuping Zhang, Xinli Ji, Ping Zhang, Mianxiang Xue, Linlin Qiu, Linlin Wang, Hong Li","doi":"10.1080/1028415X.2023.2285537","DOIUrl":"10.1080/1028415X.2023.2285537","url":null,"abstract":"<p><p>Diet can regulate systemic inflammation, which may play an important role in the development and progression of cognitive impairment and dementia. To explore the relationship between the dietary inflammatory potential and cognitive ability. A total of 2307 adults aged 60 years or older were recruited from the Fujian Provincial Hospital (Fujian, China). Dietary inflammatory properties were analyzed using the energy-adjusted dietary inflammatory index (E-DII). The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were used to assess cognitive function. Logistic regression and restricted cubic spline (RCS) were fit to assess the associations between variables. The MCI subjects with the highest E-DII scores had a higher risk of AD compared to subjects with the lowest E-DII scores (OR = 1.98, 95%CI = 1.49-2.64, <i>P</i> for trend < 0.001). Subjects with the highest E-DII levels were at increased risk of cognitive impairment compared to those with the lowest E-DII levels (OR = 1.56, 95%CI = 1.25-1.93, <i>P</i> for trend < 0.001). The link between E-DII and cognitive impairment was significant in a nonlinear dose response analysis (<i>P</i> for nonlinear = 0.001). Higher E-DII scores were associated with an increased risk of developing AD or cognitive impairment. These findings may contribute to the effective prevention of cognitive impairment by constructing a multidisciplinary synergistic prevention strategy and controlling dietary inflammation levels.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"978-988"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review and meta-analysis of chondroitinase ABC promotes functional recovery in rat models of spinal cord injury. 系统回顾和荟萃分析软骨素酶ABC促进大鼠脊髓损伤模型的功能恢复。
IF 3.6 4区 医学
Nutritional Neuroscience Pub Date : 2024-09-01 Epub Date: 2023-11-11 DOI: 10.1080/1028415X.2023.2278867
Ya-Yun Zhang, Rui-Rui Xue, Min Yao, Zhuo-Yao Li, Cai-Wei Hu, Yu-Xiang Dai, Yi-de Fang, Xing Ding, Jin-Hai Xu, Xue-Jun Cui, Wen Mo
{"title":"A systematic review and meta-analysis of chondroitinase ABC promotes functional recovery in rat models of spinal cord injury.","authors":"Ya-Yun Zhang, Rui-Rui Xue, Min Yao, Zhuo-Yao Li, Cai-Wei Hu, Yu-Xiang Dai, Yi-de Fang, Xing Ding, Jin-Hai Xu, Xue-Jun Cui, Wen Mo","doi":"10.1080/1028415X.2023.2278867","DOIUrl":"10.1080/1028415X.2023.2278867","url":null,"abstract":"<p><strong>Background: </strong>To comprehensively assess the neurologic recovery potential of chondroitinase ABC (ChABC) in rats after spinal cord injury (SCI).</p><p><strong>Methods: </strong>The PubMed, Embase, ScienceDirect, Web of Science, and China National Knowledge Infrastructure databases were searched for animal experiments that evaluated the use of ChABC in the treatment of SCI up to November 2022. Studies reporting neurological function using the Basso, Beattie, and Bresnahan (BBB) scale, as well as assessments of cavity area, lesion area, and glial fibrillary acidic protein (GFAP) levels, were included in the analysis.</p><p><strong>Results: </strong>A total of 46 studies were ultimately selected for inclusion. The results of the study showed that rats with SCI that received ChABC therapy exhibited a significant improvement in locomotor function after 7 days compared with controls (32 studies, weighted mean difference (WMD) = 0.58, [0.33, 0.83], <i>p </i>< 0.00001). Furthermore, the benefits of ChABC therapy were maintained for up to 28 days according to BBB scale. The lesion area was reduced by ChABC (5 studies, WMD = -20.94, [-28.42, -13.46], <i>p </i>< 0.00001). Meanwhile, GFAP levels were reduced in the ChABC treatment group (8 studies, WMD = -29.15, [-41.57, -16.72], <i>p < </i>0.00001). Cavity area is not statistically significant. The subgroup analysis recommended that a single injection of 10 μL (8 studies, WMD = 2.82, [1.99, 3.65], <i>p < </i>0.00001) or 20 U/mL (4 studies, WMD = 2.21, [0.73, 3.70], <i>p = </i>0.003) had a better effect on improving the function. The funnel plot of the BBB scale was found to be essentially symmetrical, indicating a low risk of publication bias.</p><p><strong>Conclusions: </strong>This systematic review and meta-analysis has indicated that ChABC could improve functional recovery in rats after SCI.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"917-933"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89719055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信