NeuronPub Date : 2025-06-04Epub Date: 2025-03-24DOI: 10.1016/j.neuron.2025.02.028
Tianming Li, Wenjie Zhou, Jin Ke, Matthew Chen, Zhen Wang, Lauren Hayashi, Xiaojing Su, Wenbin Jia, Wenxi Huang, Chien-Sheng Wang, Kapsa Bengyella, Yang Yang, Rafael Hernandez, Yan Zhang, Xinglei Song, Tianle Xu, Tianwen Huang, Yuanyuan Liu
{"title":"A pontine center in descending pain control.","authors":"Tianming Li, Wenjie Zhou, Jin Ke, Matthew Chen, Zhen Wang, Lauren Hayashi, Xiaojing Su, Wenbin Jia, Wenxi Huang, Chien-Sheng Wang, Kapsa Bengyella, Yang Yang, Rafael Hernandez, Yan Zhang, Xinglei Song, Tianle Xu, Tianwen Huang, Yuanyuan Liu","doi":"10.1016/j.neuron.2025.02.028","DOIUrl":"10.1016/j.neuron.2025.02.028","url":null,"abstract":"<p><p>Pain sensation changes according to expectation, context, and mood, illustrating how top-down circuits affect somatosensory processing. Here, we used an intersectional strategy to identify anatomical and molecular-spatial features of supraspinal descending neurons activated by distinct noxious stimulation. This approach captured known descending pain pathways as well as spinal projecting neurons that are anatomically mapped to Barrington's nucleus in the dorsal pontine tegmentum. We determined that this population of neurons expresses corticotropin-releasing hormone in Barrington's nucleus (Bar<sup>Crh</sup>) and exhibits time-locked firing in response to noxious stimulation. Chemogenetic activation of Bar<sup>Crh</sup> neurons attenuated nocifensive responses as well as tactile neuropathic pain, while silencing these neurons resulted in thermal hyperalgesia and mechanical allodynia. Mechanistically, we demonstrated that pain-related input from the ventrolateral periaqueductal gray recruits Bar<sup>Crh</sup> neurons, reduces ascending nociceptive transmission, and preferentially activates spinal dynorphin neurons to mediate analgesia. Our data expose a pontine inhibitory descending pathway that powerfully controls nocifensive sensory input to the brain.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1789-1804.e7"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04DOI: 10.1016/j.neuron.2025.05.007
Andrew D Vigotsky, Adrien Tassou, Grégory Scherrer
{"title":"Pontospinal control of nociception via a negative feedback loop.","authors":"Andrew D Vigotsky, Adrien Tassou, Grégory Scherrer","doi":"10.1016/j.neuron.2025.05.007","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.05.007","url":null,"abstract":"<p><p>The nociceptive apparatus has the remarkable ability to regulate itself by amplifying and attenuating nociception and thus pain in a context-dependent way. In this issue of Neuron, Li et al.<sup>1</sup> identified a subpopulation of pontospinal projection neurons that dampen nociception in mice.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"113 11","pages":"1658-1660"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144234660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04DOI: 10.1016/j.neuron.2025.04.011
S Thomas Carmichael
{"title":"Stem cell sidekicks: ILC2s boost brain healing with a dash of Areg.","authors":"S Thomas Carmichael","doi":"10.1016/j.neuron.2025.04.011","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.04.011","url":null,"abstract":"<p><p>Stroke leads to a limited process of neural repair. In this issue of Neuron, Zhou et al.<sup>1</sup> identify a new role for group 2 innate lymphoid cells (ILC2s), which mediate secretion of a key growth factor and behavioral recovery, in post-stroke neurogenesis.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"113 11","pages":"1655-1657"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144234662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04DOI: 10.1016/j.neuron.2025.04.022
Joel C Watts
{"title":"Shedding light on the α-synuclein fibril fuzzy coat.","authors":"Joel C Watts","doi":"10.1016/j.neuron.2025.04.022","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.04.022","url":null,"abstract":"<p><p>The β-sheet-rich core region of α-synuclein fibrils is important for defining disease manifestation. In this issue of Neuron, Han et al. demonstrate that the comparatively less structured fibril fuzzy coat region also modulates α-synuclein seeding activity in neurons and mice.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"113 11","pages":"1653-1655"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144234661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04Epub Date: 2025-03-26DOI: 10.1016/j.neuron.2025.02.029
Samuel J Gershman, Ila Fiete, Kazuki Irie
{"title":"Key-value memory in the brain.","authors":"Samuel J Gershman, Ila Fiete, Kazuki Irie","doi":"10.1016/j.neuron.2025.02.029","DOIUrl":"10.1016/j.neuron.2025.02.029","url":null,"abstract":"<p><p>Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. Although parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine-learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1694-1707.e1"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04DOI: 10.1016/j.neuron.2025.05.016
Giulia Demenego, Sara Mancinelli, Antonella Borreca, Rosalba Olga Proce, Vanessa Aragona, Matteo Miotto, Marco Cremonesi, Laura Zucchelli, Irene Corradini, Eugene Kim, Katarina Ilic, Edoardo Fraviga, Luca Pellegrino, Raffaele Badolato, Roberto Rusconi, Davide Pozzi, Marinos Kallikourdis, Diana Cash, Michela Matteoli, Simona Lodato
{"title":"Neurodevelopmental origins of structural and psychomotor defects in CXCR4-linked primary immunodeficiency.","authors":"Giulia Demenego, Sara Mancinelli, Antonella Borreca, Rosalba Olga Proce, Vanessa Aragona, Matteo Miotto, Marco Cremonesi, Laura Zucchelli, Irene Corradini, Eugene Kim, Katarina Ilic, Edoardo Fraviga, Luca Pellegrino, Raffaele Badolato, Roberto Rusconi, Davide Pozzi, Marinos Kallikourdis, Diana Cash, Michela Matteoli, Simona Lodato","doi":"10.1016/j.neuron.2025.05.016","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.05.016","url":null,"abstract":"<p><p>Inborn errors of immunity (IEI), as congenital chronic disorders, are often associated with neurobehavioral symptoms, traditionally considered secondary to patient burden. Their origin, however, has yet to be addressed. Here, we found that IEI-associated genes are expressed in neural lineages during human brain development, and in the absence of immunological challenges, IEI mutations directly impair neurodevelopmental trajectories, leading to psychomotor defects. Warts hypogammaglobulinemia immunodeficiency myelokathexis (WHIM) mice-bearing a mutation causing Cxcr4 hyperactivation-show developmental foliation defects of the cerebellum correlating with sensorimotor and affective dysfunctions, which recapitulate the alterations described in patients. WHIM cerebella single-cell profiling revealed major transcriptional deregulation in granule cell progenitors, whose aberrant proliferation and migration induce foliation and circuit defects. AMD3100 intracerebroventricular injection rescues both morphological and behavioral defects, demonstrating their brain-specific and Cxcr4-dependent origin. Collectively, our findings highlight the relevance of neurodevelopmental implications underlying psychomotor IEI manifestations, broadening our understanding of these conditions beyond immune dysfunctions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144248974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04Epub Date: 2025-04-03DOI: 10.1016/j.neuron.2025.03.010
Garret D Stuber, Valerie M Schwitzgebel, Christian Lüscher
{"title":"The neurobiology of overeating.","authors":"Garret D Stuber, Valerie M Schwitzgebel, Christian Lüscher","doi":"10.1016/j.neuron.2025.03.010","DOIUrl":"10.1016/j.neuron.2025.03.010","url":null,"abstract":"<p><p>Food intake serves to maintain energy homeostasis; however, overeating can result in obesity, which is associated with serious health complications. In this review, we explore the intricate relationship between overeating, obesity, and the underlying neurobiological mechanisms. We review the homeostatic and hedonic feeding systems, highlighting the role of the hypothalamus and reward systems in controlling food intake and energy balance. Dysregulation in both these systems leads to overeating, as seen in genetic syndromes and environmental models affecting appetite regulation when consuming highly palatable food. The concept of \"food addiction\" is examined, drawing parallels to drug addiction. We discuss the cellular substrate for addiction-related behavior and current pharmacological obesity treatments-in particular, GLP-1 receptor agonists-showcasing synaptic plasticity in the context of overeating and palatable food exposure. A comprehensive model integrating insights from addiction research is proposed to guide effective interventions for maladaptive feeding behaviors. Ultimately, unraveling the neurobiological basis of overeating holds promise for addressing the pressing public health issue of obesity.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1680-1693"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04Epub Date: 2025-04-14DOI: 10.1016/j.neuron.2025.03.014
Gaoyu Liu, Huachen Huang, Ying Wang, Yali Han, Jianye Wang, Mengxuan Shi, Pan Zhou, Chun Chen, Ying Yu, Qiang Liu, Jie Zhou
{"title":"ILC2 instructs neural stem and progenitor cells to potentiate neurorepair after stroke.","authors":"Gaoyu Liu, Huachen Huang, Ying Wang, Yali Han, Jianye Wang, Mengxuan Shi, Pan Zhou, Chun Chen, Ying Yu, Qiang Liu, Jie Zhou","doi":"10.1016/j.neuron.2025.03.014","DOIUrl":"10.1016/j.neuron.2025.03.014","url":null,"abstract":"<p><p>Stroke affects approximately 1 in 6 individuals globally and is the leading cause of adult disability, which is attributed to neuronal damage and neurological impairments. The mechanisms by which the brain tissue microenvironment supports neurogenesis and neurorepair post-stroke remain to be fully elucidated. In this study, we report that group 2 innate lymphoid cells (ILC2s) accumulate within the lesion core and subventricular zone (SVZ) during brain recovery following cerebral ischemia. Mice with ILC2 deficiency display impaired neurological scoring post-stroke. Mechanistic studies reveal that brain ILC2s enhance the proliferation of neural stem and progenitor cells (NSPCs) through the secretion of amphiregulin (Areg). Adoptive transfer of ILC2s or administration of Areg markedly improves neurological outcomes post-stroke. These findings demonstrate that ILC2s and their secreted products may represent a promising therapeutic strategy for enhancing neurorepair following brain injury.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1741-1757.e7"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04Epub Date: 2025-03-27DOI: 10.1016/j.neuron.2025.03.006
Wenrui Xie, Debora Denardin Lückemeyer, Katherine A Qualls, Arthur Silveira Prudente, Temugin Berta, Mingxia Gu, Judith A Strong, Xinzhong Dong, Jun-Ming Zhang
{"title":"Vascular motion in the dorsal root ganglion sensed by Piezo2 in sensory neurons triggers episodic pain.","authors":"Wenrui Xie, Debora Denardin Lückemeyer, Katherine A Qualls, Arthur Silveira Prudente, Temugin Berta, Mingxia Gu, Judith A Strong, Xinzhong Dong, Jun-Ming Zhang","doi":"10.1016/j.neuron.2025.03.006","DOIUrl":"10.1016/j.neuron.2025.03.006","url":null,"abstract":"<p><p>Spontaneous pain, characterized by episodic shooting or stabbing sensations, is a major complaint among neuropathic pain patients, yet its mechanisms remain poorly understood. Recent research indicates a connection between this pain condition and \"clustered firing,\" wherein adjacent sensory neurons fire simultaneously. This study presents evidence that the triggers of spontaneous pain and clustered firing are the dynamic movements of small blood vessels within the nerve-injured sensory ganglion, along with increased blood vessel density/angiogenesis and increased number of pericytes around blood vessels. Pharmacologically or mechanically evoked myogenic vascular responses increase both spontaneous pain and clustered firing in a mouse model of neuropathic pain. The mechanoreceptor Piezo2 in sensory neurons plays a critical role in detecting blood vessel movements. An anti-VEGF monoclonal antibody that inhibits angiogenesis effectively blocks spontaneous pain and clustered firing. These findings suggest targeting Piezo2, angiogenesis, or abnormal vascular dynamics as potential therapeutic strategies for neuropathic spontaneous pain.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1774-1788.e5"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuronPub Date : 2025-06-04Epub Date: 2025-03-26DOI: 10.1016/j.neuron.2025.03.005
Adam P Caccavano, Anna Vlachos, Nadiya McLean, Sarah Kimmel, June Hoan Kim, Geoffrey Vargish, Vivek Mahadevan, Lauren Hewitt, Anthony M Rossi, Ilona Spineux, Sherry Jingjing Wu, Elisabetta Furlanis, Min Dai, Brenda Leyva Garcia, Yating Wang, Ramesh Chittajallu, Edra London, Xiaoqing Yuan, Steven Hunt, Daniel Abebe, Mark A G Eldridge, Alex C Cummins, Brendan E Hines, Anya Plotnikova, Arya Mohanty, Bruno B Averbeck, Kareem A Zaghloul, Jordane Dimidschstein, Gord Fishell, Kenneth A Pelkey, Chris J McBain
{"title":"Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development.","authors":"Adam P Caccavano, Anna Vlachos, Nadiya McLean, Sarah Kimmel, June Hoan Kim, Geoffrey Vargish, Vivek Mahadevan, Lauren Hewitt, Anthony M Rossi, Ilona Spineux, Sherry Jingjing Wu, Elisabetta Furlanis, Min Dai, Brenda Leyva Garcia, Yating Wang, Ramesh Chittajallu, Edra London, Xiaoqing Yuan, Steven Hunt, Daniel Abebe, Mark A G Eldridge, Alex C Cummins, Brendan E Hines, Anya Plotnikova, Arya Mohanty, Bruno B Averbeck, Kareem A Zaghloul, Jordane Dimidschstein, Gord Fishell, Kenneth A Pelkey, Chris J McBain","doi":"10.1016/j.neuron.2025.03.005","DOIUrl":"10.1016/j.neuron.2025.03.005","url":null,"abstract":"<p><p>Within adult rodent hippocampus (HPC), opioids suppress inhibitory parvalbumin-expressing interneurons (PV-INs), disinhibiting local microcircuits. However, it is unknown whether this disinhibitory motif is conserved across cortical regions, species, or development. We observed that PV-IN-mediated inhibition is robustly suppressed by opioids in HPC proper but not primary neocortex in mice and non-human primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif is established in early development when PV-INs and opioids regulate early population activity. Morphine pretreatment partially occludes this acute opioid-mediated suppression, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Our findings demonstrate that PV-INs exhibit divergent opioid sensitivity across brain regions, which is remarkably conserved over evolution, and highlight the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1805-1822.e7"},"PeriodicalIF":14.7,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}