Giulia Demenego, Sara Mancinelli, Antonella Borreca, Rosalba Olga Proce, Vanessa Aragona, Matteo Miotto, Marco Cremonesi, Laura Zucchelli, Irene Corradini, Eugene Kim, Katarina Ilic, Edoardo Fraviga, Luca Pellegrino, Raffaele Badolato, Roberto Rusconi, Davide Pozzi, Marinos Kallikourdis, Diana Cash, Michela Matteoli, Simona Lodato
{"title":"Neurodevelopmental origins of structural and psychomotor defects in CXCR4-linked primary immunodeficiency.","authors":"Giulia Demenego, Sara Mancinelli, Antonella Borreca, Rosalba Olga Proce, Vanessa Aragona, Matteo Miotto, Marco Cremonesi, Laura Zucchelli, Irene Corradini, Eugene Kim, Katarina Ilic, Edoardo Fraviga, Luca Pellegrino, Raffaele Badolato, Roberto Rusconi, Davide Pozzi, Marinos Kallikourdis, Diana Cash, Michela Matteoli, Simona Lodato","doi":"10.1016/j.neuron.2025.05.016","DOIUrl":null,"url":null,"abstract":"<p><p>Inborn errors of immunity (IEI), as congenital chronic disorders, are often associated with neurobehavioral symptoms, traditionally considered secondary to patient burden. Their origin, however, has yet to be addressed. Here, we found that IEI-associated genes are expressed in neural lineages during human brain development, and in the absence of immunological challenges, IEI mutations directly impair neurodevelopmental trajectories, leading to psychomotor defects. Warts hypogammaglobulinemia immunodeficiency myelokathexis (WHIM) mice-bearing a mutation causing Cxcr4 hyperactivation-show developmental foliation defects of the cerebellum correlating with sensorimotor and affective dysfunctions, which recapitulate the alterations described in patients. WHIM cerebella single-cell profiling revealed major transcriptional deregulation in granule cell progenitors, whose aberrant proliferation and migration induce foliation and circuit defects. AMD3100 intracerebroventricular injection rescues both morphological and behavioral defects, demonstrating their brain-specific and Cxcr4-dependent origin. Collectively, our findings highlight the relevance of neurodevelopmental implications underlying psychomotor IEI manifestations, broadening our understanding of these conditions beyond immune dysfunctions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.05.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Inborn errors of immunity (IEI), as congenital chronic disorders, are often associated with neurobehavioral symptoms, traditionally considered secondary to patient burden. Their origin, however, has yet to be addressed. Here, we found that IEI-associated genes are expressed in neural lineages during human brain development, and in the absence of immunological challenges, IEI mutations directly impair neurodevelopmental trajectories, leading to psychomotor defects. Warts hypogammaglobulinemia immunodeficiency myelokathexis (WHIM) mice-bearing a mutation causing Cxcr4 hyperactivation-show developmental foliation defects of the cerebellum correlating with sensorimotor and affective dysfunctions, which recapitulate the alterations described in patients. WHIM cerebella single-cell profiling revealed major transcriptional deregulation in granule cell progenitors, whose aberrant proliferation and migration induce foliation and circuit defects. AMD3100 intracerebroventricular injection rescues both morphological and behavioral defects, demonstrating their brain-specific and Cxcr4-dependent origin. Collectively, our findings highlight the relevance of neurodevelopmental implications underlying psychomotor IEI manifestations, broadening our understanding of these conditions beyond immune dysfunctions.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.