Nakkyu Chae, Seungjin Seo, Richard I. Foster, Sungyeol Choi
{"title":"Oxic corrosion model for KAERI Reference disposal system via O2 consumption reactions and mixed-potential theory","authors":"Nakkyu Chae, Seungjin Seo, Richard I. Foster, Sungyeol Choi","doi":"10.1038/s41529-024-00497-z","DOIUrl":"10.1038/s41529-024-00497-z","url":null,"abstract":"The durability of copper (Cu) canisters against corrosion is critical for the licensing of deep geological repositories. Assessing oxic corrosion, a primary degradation mechanism, is essential for ensuring the reliability of such repositories. Due to the complex interactions influencing oxic corrosion, a comprehensive model is necessary for evaluating Cu canister corrosion. This study develops a model for the KAERI Reference Disposal System (KRS), incorporating mixed-potential theory with key O2 consumption reactions, including Cu corrosion, Cu(I) oxidation, FeS2 oxidation, aerobic microbial activity, and O2 dissolution and consumption. Simulation of 11 scenarios revealed that the representative KRS case would experience a maximum corrosion depth of 9.3 μm on the Cu canister after 2.3 years due to oxic corrosion, under conditions that are unfavorable for the initiation of pitting corrosion. These results suggest that oxic corrosion is not a threat to the isolation of spent nuclear fuels in KRS.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00497-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. C. Williams, A. Riahi, A. Carcea, J. D. Giallonardo, P. Keech, S. Y. Persaud, M. R. Daymond, R. C. Newman
{"title":"Hydrogen embrittlement and strain rate sensitivity of electrodeposited copper: part I – the effect of hydrogen content","authors":"D. C. Williams, A. Riahi, A. Carcea, J. D. Giallonardo, P. Keech, S. Y. Persaud, M. R. Daymond, R. C. Newman","doi":"10.1038/s41529-024-00498-y","DOIUrl":"10.1038/s41529-024-00498-y","url":null,"abstract":"Slow strain rate tensile testing was conducted on electrodeposited copper, which is a candidate coating material for used nuclear fuel containers. Embrittlement was observed in electrodeposited copper containing 26.4 ± 1.0 ppm hydrogen, with a strain rate sensitivity such that the embrittlement was exacerbated at lower strain rate (5 × 10−7 s−1). Tensile tests conducted at 100° and 200 °C also intensified embrittlement when compared with tests conducted at room temperature. In contrast, electrodeposited copper containing only 5.25 ± 0.97 ppm hydrogen exhibited ductile behavior at all tested strain rates and temperatures. These findings suggest that a previously unexplained slow strain rate hydrogen embrittlement can operate in electrodeposited copper provided that the hydrogen concentration is sufficiently high. Further analyses revealed that the deformation of embrittled copper is achieved by the formation of internal microcracks which coalesce at the point of failure.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00498-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. D. Malla, J. H. Sullivan, D. J. Penney, M. Goldsworthy, D. Britton, G. Williams, F. Goodwin, A. P. Cardoso
{"title":"Mechanistic investigation on the influence of coating weights on the corrosion behaviour of hot-dip-galvanised Zn-Mg-Al coatings","authors":"A. D. Malla, J. H. Sullivan, D. J. Penney, M. Goldsworthy, D. Britton, G. Williams, F. Goodwin, A. P. Cardoso","doi":"10.1038/s41529-024-00494-2","DOIUrl":"10.1038/s41529-024-00494-2","url":null,"abstract":"Time-lapse Microscopy, scanning vibrating electrode technique and potentiodynamic methods were used to study the influence of increasing coating weight (80–310 gm–2) on microstructure, cut-edge and surface corrosion of Zn-Mg-Al coatings in 0.17 M NaCl. Cut-edge corrosion was similar for all coatings due to the oxygen reduction reaction becoming diffusion-limited. A 64% reduction in surface corrosion was observed for high coating weights through increases in eutectic volume fraction. Spatial and temporal corrosion mechanisms were controlled by microstructural morphological differences as coating weight varied. 80 g.m–2 coatings demonstrated lateral anodic spreading potentially reducing coating penetration rates despite their higher surface corrosion rate.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-14"},"PeriodicalIF":6.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00494-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinpeng Zhao, Haiyou Huang, Yanjing Su, Lijie Qiao, Yu Yan
{"title":"Exploring high corrosion-resistant refractory high-entropy alloy via a combined experimental and simulation study","authors":"Xinpeng Zhao, Haiyou Huang, Yanjing Su, Lijie Qiao, Yu Yan","doi":"10.1038/s41529-024-00495-1","DOIUrl":"10.1038/s41529-024-00495-1","url":null,"abstract":"Refractory high-entropy alloys (HEAs) have attracted considerable attention due to their stable phase structure and excellent high-temperature properties. In this work, we performed first-principles calculations, coupled with experiments, to explore HEAs with high corrosion resistance. The results revealed that TiNbTa-based HEAs exhibited a lower tendency for corrosion. However, the appearance of local chemical fluctuations (LCFs) increased the corrosion tendency of TiNbTa-based HEAs. Comprehensive SHapley Additive exPlanations analyses uncovered that in a sample with configurational LCFs, the atomic order near the surface was altered. Therefore, corrosion behavior was affected. Based on experiments, the annealed samples exhibited typical chemical segregation and declined corrosion resistance.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00495-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeyun Zeng, Shangjun Gu, Jie Wang, Fulong Wei, Zhiying Li, Hui Yang, Changrong Li
{"title":"Influence of Nb/V on the corrosion behavior of high-strength anti-seismic rebar in marine environments","authors":"Zeyun Zeng, Shangjun Gu, Jie Wang, Fulong Wei, Zhiying Li, Hui Yang, Changrong Li","doi":"10.1038/s41529-024-00493-3","DOIUrl":"10.1038/s41529-024-00493-3","url":null,"abstract":"In this study, the immersion test, surface analysis, cross-section analysis, quantitative analysis and electrochemical analysis were used to study the influence of Nb/V on the corrosion behavior of high-strength anti-seismic rebar in marine environments. The corrosion results clarified that the addition of Nb/V improved the corrosion resistance of the rebar, thereby reducing the corrosion rate of the rebar and improving the stability of corrosion layers. Firstly, the addition of Nb/V promoted the transformation of unstable Fe oxyhydroxides to stable Fe oxyhydroxides in the surface corrosion layers of the rebar, thus increasing the α/(β + γ) ratio, corrosion potential and total impedance value. Secondly, the addition of Nb/V induced the formation of Nb oxides and V oxides in the surface corrosion layers of the rebar, and the existence of these oxides repaired the surface defects of corrosion layers, thus enhancing the corrosion resistance performance of surface corrosion layers of the rebar.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-20"},"PeriodicalIF":6.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00493-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylvain Grangeon, Mathieu Debure, Valerie Montouillout, Erik Elkaim, Catherine Lerouge, Nicolas Maubec, Nicolas Michau, Xavier Bourbon, Christelle Martin, Benoit Cochepin, Nicolas Marty
{"title":"Mineralogical and geochemical composition of a cementitious grout and its evolution during interaction with water","authors":"Sylvain Grangeon, Mathieu Debure, Valerie Montouillout, Erik Elkaim, Catherine Lerouge, Nicolas Maubec, Nicolas Michau, Xavier Bourbon, Christelle Martin, Benoit Cochepin, Nicolas Marty","doi":"10.1038/s41529-024-00488-0","DOIUrl":"10.1038/s41529-024-00488-0","url":null,"abstract":"In the present study, the chemical composition, mineralogy, and mechanisms of alteration of a cementitious grout based on a CEM III/C with addition of smectite, hydrotalcite, and silica fume, are studied using a combination of chemical and physical methods. This material was designed in the context of geological repository of radioactive wastes, with a twofold aim: first, to fill the technical voids left by drilling operations at the interface between the geological formation and the disposal galleries. Second, to neutralize a potential acidic transient due to pyrite oxidation, and to create an environment that favors low corrosion rates of carbon steels. The grout is mainly composed of calcium silicate hydrates having a Ca/Si ratio of ~0.8, incorporating Al in the bridging site of the Si chains (C-A-S-H), and accounting for 29–36 wt.% of the sample. It also contains silica fume (38–48 wt.%), smectite with interlayer Na (11–17 wt.%), hydrotalcite with interlayer CO32− (3–4 wt.%), and lower amounts of portlandite, calcite, and possibly gibbsite and gypsum. Upon alteration by water in a flow-through reactor, the main modifications affecting the sample are calcite and gypsum dissolution, hence releasing aqueous Ca2+ that is adsorbed in smectite interlayer by replacing Na+, and stoichiometric C-A-S-H dissolution. The evolution of solution chemistry and of the solid phase composition are reproduced successfully using a thermokinetic model.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00488-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong Zhao, Heng Ban, Kun Yang, Andre Broussard, Mingxin Li, Edward J. Lahoda, Jie Lian
{"title":"Transient behavior of oxide fuels with controlled microstructure and Cr2O3 additive","authors":"Dong Zhao, Heng Ban, Kun Yang, Andre Broussard, Mingxin Li, Edward J. Lahoda, Jie Lian","doi":"10.1038/s41529-024-00486-2","DOIUrl":"10.1038/s41529-024-00486-2","url":null,"abstract":"Microstructure and Cr2O3 doping profoundly impact the thermal-mechanical properties and fracture of oxides fuels. It is a challenge to study the transient behavior of nuclear fuels under loss-of-coolant-event (LOCA). In this study, the crack behavior of UO2 pellets with controlled grain structure and Cr2O3 doping was tested with rapid power ramping (300−900 °C per min) mimicking a prototypical LOCA heating profile. Dense micron-sized UO2 pellets display well-maintained integrity without cracking with the ramping up to 1500 °C at a heating rate of 8 °C per second. Fracture occurs in both pure and Cr2O3-doped dense nano-sized UO2 pellets. The Cr2O3 doped oxide fuel pellet with a larger grain size (~ 22.2 μm) displays the best performance under LOCA testing due to its highest thermal conductivity under high temperature. FEA calculations suggest a temperature gradient across the fuel pellet during transient testing, resulting in residual stress and cracking, which can be correlated with their thermal-mechanical properties.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00486-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the crystallographic orientation dependent electrochemical corrosion rates of aluminum and its binary alloys","authors":"Haini Jin, Yudong Sui, Xiaohua Yu, Hao Zhou, Jing Feng, Yehua Jiang","doi":"10.1038/s41529-024-00490-6","DOIUrl":"10.1038/s41529-024-00490-6","url":null,"abstract":"This paper provides a study for crystallographic orientation-dependent corrosion rate of aluminum employing an ab initio model with inputs from first-principles calculations. Results showed that the sequence of corrosion rate is in the order of (111) < (410) < (331) < (221) < (321) < (211) < (110) < (100) < (210) < (320) < (310) < (311) for aluminum. The predicted corrosion current densities for (111), (110), and (100) surfaces are in general agreement with the experimental results. The alloying effects were further investigated employing this model with results validated via the polarization curves of alloyed aluminum.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00490-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José María Castillo-Robles, Ernane de Freitas Martins, Pablo Ordejón, Ivan Cole
{"title":"Molecular modeling applied to corrosion inhibition: a critical review","authors":"José María Castillo-Robles, Ernane de Freitas Martins, Pablo Ordejón, Ivan Cole","doi":"10.1038/s41529-024-00478-2","DOIUrl":"10.1038/s41529-024-00478-2","url":null,"abstract":"In the last few years, organic corrosion inhibitors have been used as a green alternative to toxic inorganic compounds to prevent corrosion in materials. Nonetheless, the fundamental mechanisms determining their inhibition performance are still far from understood. Molecular modeling can provide important insights into those mechanisms, allowing for a detailed analysis of the corrosion inhibition (CI) process. However, CI modeling is frequently underexplored and commonly used in a standardized way following a pre-determined recipe to support experimental data. We highlight six fundamental aspects (A) that one should consider when modeling CI: (A1) the electronic properties of isolated inhibitors, (A2) the interaction of the inhibitor with the surface, (A3) the surface model, (A4) the effect of the anodic and cathodic zones on the surface, (A5) the solvent effects, and (A6) the electrodes’ potential effects. While A1-A3 are more frequently investigated, A4-A6 and some more complex surface models from A3 are usually not considered and represent gaps in the CI modeling literature. In this review, we discuss the main features of molecular modeling applied to CI, considering the aforementioned key aspects and focusing on the gaps that the emerging approaches aim to fill. Filling these gaps will allow performing more detailed simulations of the CI process, which, coupled with artificial intelligence (AI) methods and multiscale approaches, might construct the bridge between the nanoscale CI modeling and the continuum scale of the CI processes.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-20"},"PeriodicalIF":6.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00478-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raisa Bentay Hossain, Kazuma Kobayashi, Syed Bahauddin Alam
{"title":"Sensor degradation in nuclear reactor pressure vessels: the overlooked factor in remaining useful life prediction","authors":"Raisa Bentay Hossain, Kazuma Kobayashi, Syed Bahauddin Alam","doi":"10.1038/s41529-024-00484-4","DOIUrl":"10.1038/s41529-024-00484-4","url":null,"abstract":"Sensor degradation poses a critical yet ‘often overlooked’ challenge in accurately predicting the remaining useful life (RUL) of nuclear reactor pressure vessels (RPVs), hindering safe and efficient plant operation. This paper introduces an approach to RUL estimation that explicitly addresses sensor degradation, a significant departure from conventional methods. We model neutron embrittlement, a dominant degradation process in RPV steel, as a Wiener process and leverage real-world surveillance capsule data for insightful parameterization. Maximum likelihood estimation is utilized to characterize the degradation dynamics in the model. A Kalman filter then seamlessly integrates the degradation model with sensor measurements, effectively compensating for degradation-induced errors and providing refined state estimates. These estimates power a robust RUL prediction framework. Our results expose the profound impact of sensor degradation on conventional RUL predictions. By directly confronting sensor degradation, our method yields substantially more accurate and reliable RUL estimates. This work marks a significant advancement in the field of materials degradation, offering a powerful tool to optimize nuclear power plant safety and longevity.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-10"},"PeriodicalIF":6.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00484-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}