Mechanistic investigation on the influence of coating weights on the corrosion behaviour of hot-dip-galvanised Zn-Mg-Al coatings

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. D. Malla, J. H. Sullivan, D. J. Penney, M. Goldsworthy, D. Britton, G. Williams, F. Goodwin, A. P. Cardoso
{"title":"Mechanistic investigation on the influence of coating weights on the corrosion behaviour of hot-dip-galvanised Zn-Mg-Al coatings","authors":"A. D. Malla, J. H. Sullivan, D. J. Penney, M. Goldsworthy, D. Britton, G. Williams, F. Goodwin, A. P. Cardoso","doi":"10.1038/s41529-024-00494-2","DOIUrl":null,"url":null,"abstract":"Time-lapse Microscopy, scanning vibrating electrode technique and potentiodynamic methods were used to study the influence of increasing coating weight (80–310 gm–2) on microstructure, cut-edge and surface corrosion of Zn-Mg-Al coatings in 0.17 M NaCl. Cut-edge corrosion was similar for all coatings due to the oxygen reduction reaction becoming diffusion-limited. A 64% reduction in surface corrosion was observed for high coating weights through increases in eutectic volume fraction. Spatial and temporal corrosion mechanisms were controlled by microstructural morphological differences as coating weight varied. 80 g.m–2 coatings demonstrated lateral anodic spreading potentially reducing coating penetration rates despite their higher surface corrosion rate.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-14"},"PeriodicalIF":6.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00494-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00494-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Time-lapse Microscopy, scanning vibrating electrode technique and potentiodynamic methods were used to study the influence of increasing coating weight (80–310 gm–2) on microstructure, cut-edge and surface corrosion of Zn-Mg-Al coatings in 0.17 M NaCl. Cut-edge corrosion was similar for all coatings due to the oxygen reduction reaction becoming diffusion-limited. A 64% reduction in surface corrosion was observed for high coating weights through increases in eutectic volume fraction. Spatial and temporal corrosion mechanisms were controlled by microstructural morphological differences as coating weight varied. 80 g.m–2 coatings demonstrated lateral anodic spreading potentially reducing coating penetration rates despite their higher surface corrosion rate.

Abstract Image

Abstract Image

涂层重量对热浸镀锌锌镁铝涂层腐蚀行为影响的机理研究
采用延时显微镜、扫描振动电极技术和电位动力学方法研究了涂层重量(80-310 gm-2)的增加对 0.17 M NaCl 中 Zn-Mg-Al 涂层的微观结构、切边和表面腐蚀的影响。由于氧还原反应受到扩散限制,所有涂层的切边腐蚀情况相似。通过增加共晶体积分数,高涂层重量的表面腐蚀减少了 64%。随着涂层重量的变化,空间和时间腐蚀机制受微结构形态差异的控制。尽管表面腐蚀速率较高,但 80 g.m-2 涂层显示出横向阳极扩散,可能会降低涂层渗透率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信