C L Thorpe, A J Fisher, G Manifold, S Creasey-Gray, C M Jackson, B Stone, C L Corkhill, C Boothman, J R Lloyd, R J Hand
{"title":"Insights into long term glass corrosion mechanisms from the Ballidon experiment.","authors":"C L Thorpe, A J Fisher, G Manifold, S Creasey-Gray, C M Jackson, B Stone, C L Corkhill, C Boothman, J R Lloyd, R J Hand","doi":"10.1038/s41529-025-00571-0","DOIUrl":"10.1038/s41529-025-00571-0","url":null,"abstract":"<p><p>At the Ballidon experiment, one of the longest running glass durability studies, modern and simulant archaeological glasses were buried in mildly alkaline, under-saturated, conditions for 52 years. Glass surfaces were analysed to determine the extent and mechanisms of alteration. Alteration layer chemistry was complex and included Ca from the surrounding limestone sediment and P from porewater resulting in Ca, Pb and Fe-phosphate rich phases interspersed with Si and Al rich regions. There was evidence for ongoing evolution of the alteration layer structure due to continued fluid ingress. Lamellae in the silica-rich regions approximately numbering the years of burial and indicating a possible link between their formation and seasonal climate cycling. Comparison of field samples with laboratory dissolution tests highlighted the impact of surface finish on initial alteration rate and the limitations of using alteration layer thickness to estimate the amount of glass that has dissolved.</p>","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":"9 1","pages":"27"},"PeriodicalIF":6.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multilayer PEO coatings with encapsulated cerium for active corrosion protection of aluminium.","authors":"Safiya Al Abri, Tess Knowles, Yitao Pan, Aleksey Yerokhin, Beatriz Mingo","doi":"10.1038/s41529-025-00560-3","DOIUrl":"10.1038/s41529-025-00560-3","url":null,"abstract":"<p><p>This work aims to develop multilayer coating systems to enhance the long-term corrosion performance of aluminium-based components. The systems consists of a high-performance ceramic matrix that provides physical barrier protection, and a topcoat layer containing encapsulated Ce-based inhibitors, offering active corrosion protection through controlled released mechanisms. Two types of nanoparticles were used for the encapsulation, zeolite and halloysite nanotubes, each with different release triggers and kinetics. Multifunctional coatings demonstrated a superior corrosion performance compared to the passive unmodified coatings. Inhibitor release from the nanoparticles was triggered by ionic exchange processes and changes in pH associated with corrosion activity.</p>","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":"9 1","pages":"24"},"PeriodicalIF":6.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim Boot, Pascal Kömmelt, Ruud W A Hendrikx, Amarante J Böttger, Vera Popovich
{"title":"Effect of plastic deformation on the hydrogen embrittlement of ferritic high strength steel.","authors":"Tim Boot, Pascal Kömmelt, Ruud W A Hendrikx, Amarante J Böttger, Vera Popovich","doi":"10.1038/s41529-025-00592-9","DOIUrl":"https://doi.org/10.1038/s41529-025-00592-9","url":null,"abstract":"<p><p>The effect of hydrogen charging during plastic deformation was investigated on a ferritic steel containing TiC nano-precipitates. Specimens were subjected to a slow strain rate tensile test (SSRT) up to 0, 1, or 3% plastic engineering strain, held until a total duration of 2 h to saturate with hydrogen, then fast fractured. The specimens pre-strained elastically absorbed 2.36 wppm of hydrogen, which increased to 3.69 wppm for 3% plastic strain. Only 0.72 wppm is stored in non-dislocation traps such as precipitates, grain boundaries, and lattice sites, which makes dislocations the main contributor to hydrogen trapping. The increased hydrogen uptake did not lead to a decrease in fracture strain, which remained between 6 and 10% for all pre-strains, compared to 60% for full SSRT tests that were charged for a shorter time. This research highlights the necessity of high plastic strains and the presence of hydrogen in the environment during crack growth to cause HE in ductile steels.</p>","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":"9 1","pages":"39"},"PeriodicalIF":6.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143974124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evžen Korec, Peter Grassl, Milan Jirásek, Hong S Wong, Emilio Martínez-Pañeda
{"title":"RAAC panels can suddenly collapse before any warning of corrosion-induced surface cracking.","authors":"Evžen Korec, Peter Grassl, Milan Jirásek, Hong S Wong, Emilio Martínez-Pañeda","doi":"10.1038/s41529-025-00596-5","DOIUrl":"https://doi.org/10.1038/s41529-025-00596-5","url":null,"abstract":"<p><p>The collapse of reinforced autoclaved aerated concrete (RAAC) panels has attracted considerable public and academic interest. As detailed experimental data are not yet available and replicating the natural corrosion process requires years or decades, computational modelling is essential to understand under which conditions corrosion remains concealed. The very high porosity of RAAC is widely suspected to be a major contributing factor. However, current corrosion-induced cracking models are known to struggle with capturing the role of concrete porosity. To remedy this critical deficiency, we propose to enrich corrosion-induced cracking modelling with the analytical solution of reactive transport equations governing the precipitation of rust and a porosity-dependent description of diffusivity. With this, the corrosion concealment in RAAC panels is studied computationally for the first time, revealing that RAAC panels can suddenly collapse before any warning of corrosion-induced surface cracking and allowing to map the conditions most likely to result in sudden collapse.</p>","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":"9 1","pages":"44"},"PeriodicalIF":6.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144015189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liberato Volpe, Dora Capone, Peter Andresen, Eric Prestat, Fabio Scenini
{"title":"Oxidation behaviour of EUROFER-97 under simulated water-cooled lithium lead breeder blanket conditions.","authors":"Liberato Volpe, Dora Capone, Peter Andresen, Eric Prestat, Fabio Scenini","doi":"10.1038/s41529-025-00600-y","DOIUrl":"https://doi.org/10.1038/s41529-025-00600-y","url":null,"abstract":"<p><p>The effect of water chemistry, surface condition, alkalizing agent (LiOH <i>vs</i>. KOH), and Zn addition was investigated at 300 °C on the oxidation behaviour of reduced activation ferritic martensitic (RAF/M) EUROFER-97. EUROFER-97 is the proposed material for the water-cooled lithium lead breeder blanket (WCLL-BB) section of DEMO, but its behaviour under elevated temperature hydrogenated water has never been investigated. Advanced material characterization showed that, despite its relatively low chromium content, EUROFER-97 exhibits high corrosion resistance. This is because EUROFER-97 is protected by an inner polycrystalline FeCr<sub>2</sub>O<sub>4</sub> layer, formed regardless of the water chemistry and surface preparation investigated. The outer non-protective oxide consists of Fe<sub>3</sub>O<sub>4</sub> crystallites, which were refined when KOH was used. When injected, Zn was observed only on top of the outer crystallites without diffusing into the inner oxide layer. These findings demonstrate the excellent oxidation behaviour of EUROFER-97 in the proposed water chemistry, highlighting its suitability for the WCLL-BB section.</p>","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":"9 1","pages":"50"},"PeriodicalIF":6.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144079279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ankit Kumar, Eshan Ganju, Daniel Sinclair, Nikhilesh Chawla
{"title":"Mechanisms of corrosive freeze-thaw damage in AA7075 using time-resolved x-ray microtomography and correlative electron microscopy","authors":"Ankit Kumar, Eshan Ganju, Daniel Sinclair, Nikhilesh Chawla","doi":"10.1038/s41529-024-00547-6","DOIUrl":"10.1038/s41529-024-00547-6","url":null,"abstract":"Aluminum aircraft structures experience severe corrosion from exposure to aggressive chloride environments, including cyclic freezing and thawing of residual water during ascent and descent, introducing a cyclic freeze-thaw component to the corrosion process. While corrosion mechanisms in aircraft structures are well studied at constant temperatures, the microstructural and mechanistic behavior under freeze-and-thaw conditions remains unclear. To understand transformations induced by cyclic temperature, we used three-dimensional (3D) x-ray computed tomography (XCT) with scanning electron microscopy (SEM) to study the behavior of AA7075-T651 in a simulated seawater environment undergoing freezing and thawing cycles. Rods immersed in saltwater were thermally cycled above and below freezing, and structural changes were intermittently characterized in 3D. Under freeze-thaw conditions, cracks initiated within corrosion pits through ice expansion, causing progressive crevice growth and spalling along inclusions and grain boundaries with intermediate misorientation angles. Damage mechanisms in freeze-thaw and conventional corrosion environments are compared, with correlations to microstructural evolution.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00547-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Silva, C. L. Kugelmeier, C. B. Martins Junior, P. H. F. Oliveira, D. C. C. Magalhães, A. H. Plaine, R. Magnabosco, C. A. D. Rovere
{"title":"Mechanisms of intergranular corrosion and self-healing in high temperature aged lean duplex stainless steel 2404","authors":"R. Silva, C. L. Kugelmeier, C. B. Martins Junior, P. H. F. Oliveira, D. C. C. Magalhães, A. H. Plaine, R. Magnabosco, C. A. D. Rovere","doi":"10.1038/s41529-024-00541-y","DOIUrl":"10.1038/s41529-024-00541-y","url":null,"abstract":"This study investigated the intergranular corrosion mechanism of lean duplex stainless steel 2404 after long-term aging at 700 and 800 °C using electrochemical methods, thermodynamic calculations, and kinetic models. At 700 °C, σ phase growth significantly increases the degree of sensitization (DOS) and decreases the breakdown potential (Eb). At 800 °C, a self-healing process at the ferrite/σ interface helps recover Cr and Mo depleted regions, reducing DOS after 72 h of aging and stabilizing Eb after 24 h at higher electrode potentials. However, the corrosion process is intensified at the σ/austenite interface, compromising intergranular corrosion resistance during prolonged aging. The findings show that complete recovery of corrosion resistance via self-healing is not achieved when high fractions of σ phase are formed. In addition, DICTRA calculations effectively evaluate corrosion resistance degradation from σ phase growth, providing deeper insights into the intergranular corrosion mechanism.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-16"},"PeriodicalIF":6.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00541-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feedback effect of the size of mineral particles on the molecular mechanisms employed by Caballeronia mineralivorans PML1(12) to weather minerals","authors":"Cintia Blanco Nouche, Carine Cochet, Marie-Pierre Turpault, Stéphane Uroz","doi":"10.1038/s41529-024-00544-9","DOIUrl":"10.1038/s41529-024-00544-9","url":null,"abstract":"Mineral dissolution by bacteria is thought to depend on mineral properties, solution chemistry, and the carbon sources metabolized. To investigate whether mineral particle size could impact the effectiveness of weathering and the molecular mechanisms employed by bacteria, the strain Caballeronia mineralivorans PML1(12) was considered. Through microcosm and kinetic experiments, we quantified changes in biotite dissolution, bacterial growth, siderophore biosynthesis, and acidification. The use of different solution chemistries, carbon sources, and particle sizes (from <20 to 500 µm) allowed us to decipher the relative role of acidification- and chelation-driven mineral weathering by bacteria. Results revealed a faster dissolution for smaller particles (<100 µm) that strongly affected both solution chemistry and bacterial physiology, while larger particles (>100 µm) showed a slower and steady dissolution with minimal impact on bacterial processes. These findings underscore the influence and feedback effects of particle size on the dynamics of dissolution and the mechanisms employed by bacteria.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00544-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chamanthi Denisha Jayaweera, David Fernandes del Pozo, Ivaylo Plamenov Hitsov, Maxime Van Haeverbeke, Thomas Diekow, Arne Verliefde, Ingmar Nopens
{"title":"Assessing the feasibility of using a data-driven corrosion rate model for optimizing dosages of corrosion inhibitors","authors":"Chamanthi Denisha Jayaweera, David Fernandes del Pozo, Ivaylo Plamenov Hitsov, Maxime Van Haeverbeke, Thomas Diekow, Arne Verliefde, Ingmar Nopens","doi":"10.1038/s41529-024-00545-8","DOIUrl":"10.1038/s41529-024-00545-8","url":null,"abstract":"Optimizing dosages of corrosion inhibitors requires experimental data gathered from time-consuming methods. The current study examines the feasibility of optimizing inhibitor dosages using a model trained for predicting corrosion rates more easily measured using linear polarization resistance in a full-scale cooling water system. A comprehensive study on variable selection showed that linearly correlated variables are necessary to predict corrosion trends. The Sobol sensitivity of inhibitors is trivialized by variables linearly correlated to the corrosion rate. The study highlights the importance of achieving high model prediction accuracy and high Sobol sensitivity of inhibitors to the corrosion rate, for using the model for inhibitor dosage optimization.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00545-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abraham Rojas Z, Sam Bakhtiari, Chris Aldrich, Victor M. Calo, Mariano Iannuzzi
{"title":"XGBoost model for the quantitative assessment of stress corrosion cracking","authors":"Abraham Rojas Z, Sam Bakhtiari, Chris Aldrich, Victor M. Calo, Mariano Iannuzzi","doi":"10.1038/s41529-024-00538-7","DOIUrl":"10.1038/s41529-024-00538-7","url":null,"abstract":"This study employs a data-driven methodology to assess the susceptibility of Fe-Cr-Ni alloys to stress corrosion cracking (SCC) in chloride-containing environments. Historical data from constant-load SCC testing in boiling magnesium chloride were used to train an XGBoost regression model. This model overcomes limitations related to multicollinearity and insufficient sample sizes seen in previous studies. The XGBoost model captures complex interactions between alloy compositions and stresses, explaining 94.9% (R² = 0.949) of SCC susceptibility of the specimens. Shapley additive explanations (SHAP) were employed to interpret the model, offering new metallurgical insights, such as the critical role of nickel content. The SHAP analysis identified an optimal nickel range between 14.5 and 45 wt%, which markedly enhances SCC resistance. The XGBoost-SHAP framework in this work comprehensively isolates the contributions of chemical constituents and stress, offering a path toward more systematic alloy design—departing from the traditional reliance on trial and error or serendipity.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-19"},"PeriodicalIF":6.6,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00538-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}