Aminul Islam, Qidong Li, Emma Storimans, Kay Ton, Tahrim Alam, Zoheir N Farhat
{"title":"Effect of microstructure on hydrogen permeation and trapping in natural gas pipeline steels.","authors":"Aminul Islam, Qidong Li, Emma Storimans, Kay Ton, Tahrim Alam, Zoheir N Farhat","doi":"10.1038/s41529-025-00615-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines hydrogen permeation and trapping in three types of natural gas pipeline steels from different decades in Canada-modern, vintage, and legacy steels. Electrochemical permeation experiments were conducted to measure the diffusion coefficient, subsurface concentration, and trap density of hydrogen. The results were analyzed to evaluate the susceptibility of these steels to hydrogen embrittlement and to understand the effects of hydrogen on their mechanical properties. Vintage steel exhibited 50% higher steady-state permeation current and 97% greater effective diffusivity compared to modern steel, while legacy steel showed intermediate values. Hydrogen diffusion increased with grain size and pearlite content but decreased with dislocation density. Modern steel demonstrated the highest resistance to hydrogen permeation due to its finer grain structure and higher dislocation density. This study provides essential insights into the diffusion behavior and trapping mechanisms of hydrogen in natural gas pipeline steels, enhancing the understanding of material performance under hydrogen exposure.</p>","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":"9 1","pages":"70"},"PeriodicalIF":7.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41529-025-00615-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines hydrogen permeation and trapping in three types of natural gas pipeline steels from different decades in Canada-modern, vintage, and legacy steels. Electrochemical permeation experiments were conducted to measure the diffusion coefficient, subsurface concentration, and trap density of hydrogen. The results were analyzed to evaluate the susceptibility of these steels to hydrogen embrittlement and to understand the effects of hydrogen on their mechanical properties. Vintage steel exhibited 50% higher steady-state permeation current and 97% greater effective diffusivity compared to modern steel, while legacy steel showed intermediate values. Hydrogen diffusion increased with grain size and pearlite content but decreased with dislocation density. Modern steel demonstrated the highest resistance to hydrogen permeation due to its finer grain structure and higher dislocation density. This study provides essential insights into the diffusion behavior and trapping mechanisms of hydrogen in natural gas pipeline steels, enhancing the understanding of material performance under hydrogen exposure.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies