Georgios A. Kotsakis, Li Xie, Danyal A. Siddiqui, Diane Daubert, Daniel J. Graham, Francisco Javier Gil
{"title":"Dynamic assessment of titanium surface oxides following mechanical damage reveals only partial passivation under inflammatory conditions","authors":"Georgios A. Kotsakis, Li Xie, Danyal A. Siddiqui, Diane Daubert, Daniel J. Graham, Francisco Javier Gil","doi":"10.1038/s41529-024-00514-1","DOIUrl":"10.1038/s41529-024-00514-1","url":null,"abstract":"Motivated by clinical problems of titanium implant degradation, we developed a workflow that enabled assessment of surface oxide dynamics as a function of clinical interventions and inflammation conditions. We found that mechanical damage led to decrease of stoichiometric TiO2 ratio in the passivation oxide film and further resulted in accelerated degradation under inflammatory anaerobic conditions. This method can be employed for the assessment of surface oxides to monitor implant safety.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-6"},"PeriodicalIF":6.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00514-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liang-Liang Wu, Hao-Jie Yan, Tao Fan, Qing-Qing Sun, Lian-Kui Wu, Fa-He Cao
{"title":"The oxidation behavior and interfacial reaction between SiO2 coating and Ti45Al8.5Nb alloy","authors":"Liang-Liang Wu, Hao-Jie Yan, Tao Fan, Qing-Qing Sun, Lian-Kui Wu, Fa-He Cao","doi":"10.1038/s41529-024-00511-4","DOIUrl":"10.1038/s41529-024-00511-4","url":null,"abstract":"In this study, SiO2 coating was electrodeposited on Ti45Al8.5Nb alloy to enhance its oxidation resistance at 900 °C. The focus was on the interaction between SiO2 coating and the alloy substrate, and specifically, the role of the Nb element in this context. The formation of a SiO2/(Ti, Nb)O2/Ti5Si3 + Al2O3 three-layer oxide scale significantly inhibits the inward diffusion of oxygen. Beyond the characteristic Ti5Si3 + Al2O3 layer at the interface, the Nb2Al phase embedded within Ti5Si3 was observed. Concurrently, the presence of a (Ti, Nb)O2 layer was confirmed. The relationship between the coating thickness and oxidation resistance was also investigated. It was found that the thickness of the SiO2 coating affects the density of the oxide scale and the inward diffusion rate of oxygen. Moreover, due to the good adhesion to the substrate, the derived oxide scale exhibited good anti-peeling performance when subjected to a cyclic oxidation test.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-15"},"PeriodicalIF":6.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00511-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salil Sainis, Dan Persson, Karin Törne, Johan Tidblad, Dominique Thierry
{"title":"The influence of recycling on the localized corrosion susceptibility of extruded AA6063 alloys","authors":"Salil Sainis, Dan Persson, Karin Törne, Johan Tidblad, Dominique Thierry","doi":"10.1038/s41529-024-00510-5","DOIUrl":"10.1038/s41529-024-00510-5","url":null,"abstract":"An approach involving the quantification of microstructure characterized by different techniques such as SEM, EDS, and SKPFM is statistically treated to provide a deeper insight into the influence of recycling AA6063 on localized corrosion susceptibility. Particularly, the intermetallic particles and the two forms of localized corrosion – pitting and intergranular corrosion are systematically documented, measured, and analyzed. Even trace amounts of Cu and Zn introduced into the alloy from recycling had a remarkable effect on the localized corrosion susceptibility. The study found that the initiation and early evolution of the two localized corrosions are in competition, and the predominance of one over the other is closely linked to the composition of the alloy, and microstructure. Recycled variants with higher trace Cu made the alloy more susceptible to pitting attack whereas higher trace Zn is linked with greater IGC susceptibility. The trace amount of higher Zn addition has a particularly beneficial effect on pitting susceptibility as it reduces the likelihood of pitting even in alloys with a higher trace Cu content. The SKPFM results obtained in this study provided a basis for the circumferential pitting susceptibility around intermetallic particles, as a higher volta potential difference (∆V) implied a higher driving force for corrosion. ∆V differences between the different variants were further explained based on trace recycled element distribution in the microstructure.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00510-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic evaluation of the aerial and aqueous oxidation of Al – Mg, Al – Si and Al – Mg – Si system alloys at 298 K","authors":"Pavel Anatolyevich Nikolaychuk, Ernst Kozeschnik","doi":"10.1038/s41529-024-00446-w","DOIUrl":"10.1038/s41529-024-00446-w","url":null,"abstract":"Aluminum and magnesium are the lightest structural metals, and therefore, various alloys based on them are widely used in both, automotive and aerospace industries. However, aluminum and magnesium are very easily affected by atmospheric and aqueous corrosion, and, therefore, the alloying elements should enhance their corrosion stability. In this work, the thermodynamic analysis of phase and chemical equilibria involving aluminum and magnesium alloys doped with silicon in oxygen–containing air environments, as well as the analysis of chemical and electrochemical equilibria involving these alloys in aqueous environments is conducted. The phase and chemical equiliibria in the Al–Mg, Al–Si, Mg–Si, and Al–Mg–Si systems at 298 K are considered, and the thermodynamic activities of the components of common Al–Mg–Si system alloys are calculated. The invariant chemical equilibria in the systems Al–Mg–O, Al–Si–O, Mg–Si–O at 298 K are considered, the isothermal section of the state diagrams of these systems are plotted, and the oxidation scheme of the Al–Mg–Si system alloys in excess oxygen is proposed. The chemical and electrochemical equilibria in the Al–Mg–Si–H2O system at 298 K are considered and presented in form of the activity – pH and the potential – pH diagrams, and the oxidation of the Al–Mg–Si system alloys in aqueous environments is discussed.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-26"},"PeriodicalIF":6.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00446-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meihui Sun, Xingyu Xiao, Xuexu Xu, Jiangwen Li, Tan Zhao, Li Gong, Cuiwei Du, Xiaogang Li
{"title":"Effect of Mo and Sn co-regulation on low alloy steel corrosion in tropical marine atmosphere","authors":"Meihui Sun, Xingyu Xiao, Xuexu Xu, Jiangwen Li, Tan Zhao, Li Gong, Cuiwei Du, Xiaogang Li","doi":"10.1038/s41529-024-00507-0","DOIUrl":"10.1038/s41529-024-00507-0","url":null,"abstract":"The influence of co-regulating Mo and Sn on the corrosion resistance of low alloy steel in tropical marine atmospheric was investigated. The combined addition of Mo and Sn has been found to significantly improve the corrosion resistance of low alloy steel, augmenting the protective capabilities of the rust layer. This combined addition promotes the formation of protective compounds like α-FeOOH and FeCr2O4 within the alloy rust layer. Furthermore, it facilitates the conversion of Cr, Ni and Cu into corrosion-resistant oxides such as Cr2O3, NiFe2O4 and CuO, thereby enhancing the density of the rust layer. Additionally, as corrosion progresses over time, higher levels of Sn addition lead to increased Sn content within the inner rust layer, consequently bolstering the protective qualities of the rust layer. This comprehensive understanding sheds light on the synergistic effects of Mo and Sn in fortifying the corrosion resistance of low alloy steel, offering insights for the development of advanced corrosion-resistant materials in marine environments.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-14"},"PeriodicalIF":6.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00507-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina Margarita Charalampidou, Nicoleta Siskou, Dimitris Georgoulis, Stavros K. Kourkoulis, Mikhail Zheludkevich, Nikolaos D. Alexopoulos
{"title":"Corrosion of aluminium alloy AA2024-Τ3 specimens subjected to different artificial ageing heat treatments","authors":"Christina Margarita Charalampidou, Nicoleta Siskou, Dimitris Georgoulis, Stavros K. Kourkoulis, Mikhail Zheludkevich, Nikolaos D. Alexopoulos","doi":"10.1038/s41529-024-00503-4","DOIUrl":"10.1038/s41529-024-00503-4","url":null,"abstract":"The effect of artificial-ageing on corrosion behaviour of aluminium alloy (AA)2024-T3 was investigated. The natural ageing which takes place during the aircraft''s lifespan was simulated with isothermal heat-treatments at 190 °C. Electrochemical impedance spectroscopy measurements were performed in different heat-treated specimens to examine the prevailing corrosion mechanisms. Additionally, pre-corroded tensile specimens from different heat-treatment conditions were mechanically tested to assess the corrosion-induced degradation. Different forms of corrosion were revealed in the investigated ageing tempers; intense localized attack was noticed in the initial (T3) and under-aged (UA) tempers. UA condition exhibited the highest susceptibility to corrosion propagation followed by T3, according to the charge transfer resistance RCT and degradation rate of tensile elongation at fracture Af ( ≈ 0.118) and ( ≈ 0.103), respectively. Corrosion-induced degradation rates for the peak-aged (PA) and over-aged (OA) tempers ( ≈ 0.042 and 0.054, respectively) were almost one third of UA, attributed to volume fraction and size of the precipitated second-phase particles.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-19"},"PeriodicalIF":6.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00503-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of reactive transport in the alteration of vitrified waste packages: the MOS model","authors":"Pierre Frugier, Nicole Godon, Yves Minet","doi":"10.1038/s41529-024-00496-0","DOIUrl":"10.1038/s41529-024-00496-0","url":null,"abstract":"The MOS model (acronym coming from the French MOdèle Simplifié) was born from the desire to have a simple tool that can quantify the contribution of the diffusive reactive environment to the alteration of a vitrified nuclear waste package in deep geological disposal conditions. In the model, this environmental contribution consists partly of the ability of iron, metallic casing corrosion products, and argillite to consume silicon, and partly of the brake on diffusive transport provided by silicon through the successive layers of environmental material. It is a modeling tool serving as an intermediary between operational modeling for the calculation of the source term from the glass, mathematically more simple and giving higher upper margins, and models that use geochemistry and transport, giving greater accuracy for the interactions between glass and its environment. The goal of the MOS model is to calculate the possible impact of silicon reactive diffusion on the alteration rate within the different layers of material surrounding nuclear glass. This article lists the simplifying hypotheses on which the MOS is based, presents the digital resolution method for an environment consisting of several successive layers with different reactivity and transport properties, and explains the model’s implementation.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00496-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajnikant V. Umretiya, Haozheng Qu, Liang Yin, Timothy B. Jurewicz, Vipul K. Gupta, Marija Drobnjak, Michael P. Knussman, Andrew K. Hoffman, Raul B. Rebak
{"title":"Corrosion behavior of additively manufactured FeCrAl in out-of-pile light water reactor environments","authors":"Rajnikant V. Umretiya, Haozheng Qu, Liang Yin, Timothy B. Jurewicz, Vipul K. Gupta, Marija Drobnjak, Michael P. Knussman, Andrew K. Hoffman, Raul B. Rebak","doi":"10.1038/s41529-024-00499-x","DOIUrl":"10.1038/s41529-024-00499-x","url":null,"abstract":"Iron-Chromium-Aluminum (FeCrAl) alloys are candidate materials for the cladding of light water reactor (LWR) fuels. The FeCrAl alloys in general range in Cr composition from 12% (C26M) to 21% (APMT). In this work, the general corrosion behavior of Additively Manufactured (AM) C26M coupons was compared to the behavior of traditional Powder Metallurgy (PM) coupons. Immersion testing were conducted for 12 months at 288 °C and 330 °C in pure water containing either oxygen or hydrogen. Results show that the mass change of AM specimens in hydrogenated water was like the mass change of PM specimens. In oxygenated water, the mass change of AM coupons was higher and less reproducible than for the PM coupons. Porosity in the AM specimens makes their behavior less predictable in high-temperature water.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-8"},"PeriodicalIF":6.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00499-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krishna C. Polavaram, Sai Kalyan Evani, Sean M. Drewry, Elena Tajuelo Rodriguez, Mohammed G. Alnaggar, Christopher J. Wetteland, Katharine Page, John S. Popovics, Kurt E. Sickafus, Yann Le Pape, Nishant Garg
{"title":"Silicon ion radiation as a viable surrogate for emulating neutron radiation damage in silicates","authors":"Krishna C. Polavaram, Sai Kalyan Evani, Sean M. Drewry, Elena Tajuelo Rodriguez, Mohammed G. Alnaggar, Christopher J. Wetteland, Katharine Page, John S. Popovics, Kurt E. Sickafus, Yann Le Pape, Nishant Garg","doi":"10.1038/s41529-024-00506-1","DOIUrl":"10.1038/s41529-024-00506-1","url":null,"abstract":"Nuclear power plants are aging around the world, and a precise assessment of irradiation damage in their components is needed. One key component, concrete, and specifically the silicates in its aggregates, can undergo significant expansion upon neutron radiation, which can lead to cracking and, ultimately, structural failure. However, assessing and predicting the extent of damage via neutron radiation is challenging due to reasons such as residual radioactivity and, most importantly, the high time involved. Here, we evaluate whether ion radiation can be a viable surrogate. Specifically, by employing Si2+ ion radiations and a comprehensive multi-modal imaging protocol, we report mineral-specific responses for key silicates such as quartz, albite, anorthite, and microcline. We find that 10 MeV Si2+ ions result in mineral expansions that are remarkably comparable to neutron radiation equivalent expansions (R2 = 0.86, RMSE = 1.29%), opening up pathways towards rapid assessment of silicates subject to irradiation.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-14"},"PeriodicalIF":6.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00506-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}