npj Materials Degradation最新文献

筛选
英文 中文
Hydrogen diffusion and trapping in a cryogenic processed high-Cr ferrous alloy 低温加工高铬铁合金中的氢扩散和捕获
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-10-11 DOI: 10.1038/s41529-024-00522-1
Patricia Jovičević-Klug, J. Manoj Prabhakar, Cristiano Kasdorf Giesbrecht, Tim M. Schwarz, Carsten Bonnekoh, Michael Rieth, Michael Rohwerder
{"title":"Hydrogen diffusion and trapping in a cryogenic processed high-Cr ferrous alloy","authors":"Patricia Jovičević-Klug, J. Manoj Prabhakar, Cristiano Kasdorf Giesbrecht, Tim M. Schwarz, Carsten Bonnekoh, Michael Rieth, Michael Rohwerder","doi":"10.1038/s41529-024-00522-1","DOIUrl":"10.1038/s41529-024-00522-1","url":null,"abstract":"The effect of hydrogen diffusion and trapping was studied in a high-Cr ferrous alloy using an inverted scanning Kelvin probe and thermal desorption spectroscopy in correlation with microstructure and residual stress study. In addition, different processing of ferritic/martensitic 9Cr1WTaV alloy (EUROFER97) was tested in correlation with observed selected properties to observe induced changes in material degradation and surface. The activation energies for hydrogen traps were shown to have distinct peaks corresponding to different trapping mechanisms, including matrix dislocations and grain boundaries. For the cryogenically treated sample, an additional peak was also identified and correlated with increased carbide precipitation.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00522-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microstructure-corrosion relationships in laser-welded dissimilar steel-to-aluminium joints 激光焊接异种钢铝接头的微观结构-腐蚀关系
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-10-11 DOI: 10.1038/s41529-024-00517-y
J. I. Ahuir-Torres, S. Jabar, P. Franciosa, D. Ceglarek, H. R. Kotadia
{"title":"The microstructure-corrosion relationships in laser-welded dissimilar steel-to-aluminium joints","authors":"J. I. Ahuir-Torres, S. Jabar, P. Franciosa, D. Ceglarek, H. R. Kotadia","doi":"10.1038/s41529-024-00517-y","DOIUrl":"10.1038/s41529-024-00517-y","url":null,"abstract":"This study investigated the corrosion behaviour of dissimilar steel-to-aluminium laser-welded conduction, and keyhole mode (partial- and full-penetration) lap joints through electrochemical techniques and advanced microstructural characterisation. The corrosion resistance of the weld was found to be higher than the base materials, primarily due to the presence of cathodic FexAly (η-Fe2Al5, θ-Fe4Al13, β-FeAl) intermetallic compounds (IMCs) with high corrosion potential. The different micro and macro-galvanic corrosion mechanisms were found at various interfaces around the weld, resulting in localised pitting corrosion. The keyhole mode welding showed improved corrosion resistance, primarily attributed to the type, size, and distribution of IMCs.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-17"},"PeriodicalIF":6.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00517-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale heterogeneities dictate corrosion pathways in a high-strength aluminum alloy 纳米级异质性决定了高强度铝合金的腐蚀途径
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-10-03 DOI: 10.1038/s41529-024-00520-3
S. Choudhary, R. G. Kelly
{"title":"Nanoscale heterogeneities dictate corrosion pathways in a high-strength aluminum alloy","authors":"S. Choudhary, R. G. Kelly","doi":"10.1038/s41529-024-00520-3","DOIUrl":"10.1038/s41529-024-00520-3","url":null,"abstract":"Micro-segregation and resulting nanoscale microstructural heterogeneities are unavoidable in wrought 7xxx aluminum alloys produced using current casting and thermomechanical processes. This study demonstrates that these nanoscale heterogeneities significantly impact pit growth in an extruded, age-hardened aluminum alloy 7075-T651. The alloy exhibits a complex microstructure with heterogeneously distributed E-Al18Mg3Cr2 dispersoids, which promote the precipitation of coarse ƞ-Mg(ZnAlCu)2 nanoparticles resulting in the formation of solute-depleted regions both within the grain interior and along the grain boundaries in dispersoid-rich areas. These alterations affect resistance to pit growth at the nanoscale, governing the transition of micro-galvanic sites into large pits with potential for crack initiation. This work underscores the necessity for modifying alloy composition and casting processes to develop superior aluminum alloys for critical applications.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-10"},"PeriodicalIF":6.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00520-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitor_Mol_VAE: a variational autoencoder approach for generating corrosion inhibitor molecules Inhibitor_Mol_VAE:生成缓蚀剂分子的变异自动编码器方法
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-10-01 DOI: 10.1038/s41529-024-00518-x
Haiyan Gong, Zhongheng Fu, Lingwei Ma, Dawei Zhang
{"title":"Inhibitor_Mol_VAE: a variational autoencoder approach for generating corrosion inhibitor molecules","authors":"Haiyan Gong, Zhongheng Fu, Lingwei Ma, Dawei Zhang","doi":"10.1038/s41529-024-00518-x","DOIUrl":"10.1038/s41529-024-00518-x","url":null,"abstract":"Deep learning-based generative modeling demonstrates proven advantages as an effective approach in molecular discovery. This study introduces a generative-network based method called Inhibitor_Mol_VAE, which uses a variational autoencoder model to generate corrosion inhibitor molecules with targeted inhibition efficiency. We first evaluate the model’s ability to reconstruct molecules. Then, we assess the model’s ability to generate new inhibitor molecules using physiochemical properties (including MolWt, LogP, Vdw_volume, and Electronegativity). New molecules with high inhibition efficiencies at low concentrations, such as [ethoxy(methoxy)phosphoryl]-phenylmethanol and (alpha-methylamino-benzyl)-phosphonsaeure-monoaethylester are successfully discovered.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-17"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00518-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dual role of dissolution at a crack tip 裂纹尖端溶解的双重作用
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-09-30 DOI: 10.1038/s41529-024-00513-2
Mingjie Zhao, Wenjia Gu, Derek H. Warner
{"title":"The dual role of dissolution at a crack tip","authors":"Mingjie Zhao, Wenjia Gu, Derek H. Warner","doi":"10.1038/s41529-024-00513-2","DOIUrl":"10.1038/s41529-024-00513-2","url":null,"abstract":"The scientific literature is rife with conflicting reports regarding the effect of dissolution on fracture. The complexity arises, in part, due to dissolution often being intertwined with various other mechanisms such as hydrogen embrittlement and the formation of debris behind an advancing crack, which can obfuscate the sole contribution of dissolution. Here, we report on the effect of dissolution when acting in isolation via the utilization of an efficient atomistic-based multiscale modeling technique and a specialized interatomic potential. Our results reveal a dual role of dissolution on crack behavior, introducing an additional layer of complexity to the mechanistic basis of environmental effects. This finding, while challenging for engineering prognosis, provides a route for engineering improved materials. Recognizing and navigating this duality could be pivotal to precluding potentially disastrous consequences in a broad array of engineering applications, from harnessing earth’s energy resources to aerospace technologies.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-7"},"PeriodicalIF":6.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00513-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic elucidation of the molecular weight dependence of corrosion inhibition afforded by polyetherimide coatings 从机理上阐明聚醚酰亚胺涂层的缓蚀作用与分子量的关系
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-09-29 DOI: 10.1038/s41529-024-00516-z
Tiffany E. Sill, Victor Ponce, Carlos Larriuz, Ron Chertakovsky, Caroline G. Valdes, Torrick Fletcher Jr, Jakob Nielsen, Kerry Fuller, Homero Castaneda, Rachel D. Davidson, Peter M. Johnson, Sarbajit Banerjee
{"title":"Mechanistic elucidation of the molecular weight dependence of corrosion inhibition afforded by polyetherimide coatings","authors":"Tiffany E. Sill, Victor Ponce, Carlos Larriuz, Ron Chertakovsky, Caroline G. Valdes, Torrick Fletcher Jr, Jakob Nielsen, Kerry Fuller, Homero Castaneda, Rachel D. Davidson, Peter M. Johnson, Sarbajit Banerjee","doi":"10.1038/s41529-024-00516-z","DOIUrl":"10.1038/s41529-024-00516-z","url":null,"abstract":"Corrosion of critical metal components exacts a heavy toll in terms of maintenance and replacement costs and damage to ecosystems upon failure. Polymeric barrier coatings protect against corrosion; however, design principles for modulating polymer structure to improve corrosion inhibition remain contested and elusive. Here, we examine molecular-weight-dependent differences in the efficacy of corrosion inhibition on aluminum substrates afforded by polyetherimide (PEI) coatings. Analyses of coated substrates evidence a clear trend denoting improved corrosion inhibition for higher weighted-average molecular weight (MW) PEI. The more rigid and entangled macromolecular network of higher-MW variants exhibit stable impedance values, |Z|0.01 Hz ca. 1010 Ω/cm2, upon extended immersion in brine media, whereas lower-MW variants are readily hydrated and disentangled resulting in a significant reduction in impedance values. Results illuminate mechanistic understanding of molecular-weight-dependence in corrosion inhibition, advance a framework for considering the dynamical evolution of secondary structure, and exemplify generalizable design principles for corrosion inhibition.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-13"},"PeriodicalIF":6.6,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00516-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repairment of carbon steel oxide scale using Ce³⁺ and Ni²⁺ doped sol-gel technique 利用掺杂 Ce³⁺ 和 Ni²⁺ 的溶胶-凝胶技术修复碳钢氧化鳞片
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-09-18 DOI: 10.1038/s41529-024-00515-0
Yanwei Zeng, Peng Xu, Tianguan Wang, Yuhao Xie, Guoqiang Liu, Huixuan Qian, Zhiyuan Feng, Bing Lei, Ping Zhang, Guozhe Meng
{"title":"Repairment of carbon steel oxide scale using Ce³⁺ and Ni²⁺ doped sol-gel technique","authors":"Yanwei Zeng, Peng Xu, Tianguan Wang, Yuhao Xie, Guoqiang Liu, Huixuan Qian, Zhiyuan Feng, Bing Lei, Ping Zhang, Guozhe Meng","doi":"10.1038/s41529-024-00515-0","DOIUrl":"10.1038/s41529-024-00515-0","url":null,"abstract":"Corrosion of carbon steel rebars in concrete structures significantly compromises their safety, reliability, and environmental performance. This work focuses on enhancing rebar corrosion resistance by repairing the defects of oxide scale. Here, sol-gel was employed as a carrier, by which Ce3+ and Ni2+ were transferred to the oxide scale defects based on the isoelectric point theory, and deposited at these defects with the pH variation as temperature. The repaired oxide scale showed enhanced uniform elemental distribution and improved electrochemical properties, maintaining integrity even under prolonged exposure to Cl−-rich environments. Notably, the impedance modulus at 0.01 Hz (|Z | 0.01Hz) of treated samples was six times higher than untreated ones, indicating superior performance against high electric fields. This strategy shows great potential for enhancing the durability of concrete structures.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-17"},"PeriodicalIF":6.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00515-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dependency of tensile properties and biodegradation on molecular mass during hydrolysis of poly(butylene succinate) 聚丁二酸丁二醇酯水解过程中拉伸性能和生物降解与分子质量的关系
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-09-17 DOI: 10.1038/s41529-024-00512-3
Felix Eckel, Daniel Van Opdenbosch, Katharina Sophie Schandl, Cordt Zollfrank
{"title":"Dependency of tensile properties and biodegradation on molecular mass during hydrolysis of poly(butylene succinate)","authors":"Felix Eckel, Daniel Van Opdenbosch, Katharina Sophie Schandl, Cordt Zollfrank","doi":"10.1038/s41529-024-00512-3","DOIUrl":"10.1038/s41529-024-00512-3","url":null,"abstract":"The molecular mass of biodegradable polymers often explains the varying biodegradation results in outdoor environments and determines the mechanical properties and embrittlement of polymer samples. Accordingly, we have investigated the relationship between the molecular mass of poly(butylene succinate) (PBS) and its tensile properties and mineralisation. With decreasing molecular mass, we found that Young’s modulus was rising while tensile strength and elongation at break were decreasing. A ductile-brittle transition was found between a Mw of 80,000 g/mol and 110,000 g/mol. The dependency of mechanical properties on molecular mass as determined after hydrolysis differed significantly from a study performed on freshly synthesised PBS. Biodegradation to CO2 by microorganisms in a mixture of field soil and compost soil was found to begin at a Mw between 8060 g/mol and 26,666 g/mol. These results are essential for estimating the service life of products made from PBS.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-7"},"PeriodicalIF":6.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00512-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic assessment of titanium surface oxides following mechanical damage reveals only partial passivation under inflammatory conditions 机械损伤后钛表面氧化物的动态评估显示,在炎症条件下只有部分钝化
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-09-17 DOI: 10.1038/s41529-024-00514-1
Georgios A. Kotsakis, Li Xie, Danyal A. Siddiqui, Diane Daubert, Daniel J. Graham, Francisco Javier Gil
{"title":"Dynamic assessment of titanium surface oxides following mechanical damage reveals only partial passivation under inflammatory conditions","authors":"Georgios A. Kotsakis, Li Xie, Danyal A. Siddiqui, Diane Daubert, Daniel J. Graham, Francisco Javier Gil","doi":"10.1038/s41529-024-00514-1","DOIUrl":"10.1038/s41529-024-00514-1","url":null,"abstract":"Motivated by clinical problems of titanium implant degradation, we developed a workflow that enabled assessment of surface oxide dynamics as a function of clinical interventions and inflammation conditions. We found that mechanical damage led to decrease of stoichiometric TiO2 ratio in the passivation oxide film and further resulted in accelerated degradation under inflammatory anaerobic conditions. This method can be employed for the assessment of surface oxides to monitor implant safety.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-6"},"PeriodicalIF":6.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00514-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The oxidation behavior and interfacial reaction between SiO2 coating and Ti45Al8.5Nb alloy 二氧化硅涂层与 Ti45Al8.5Nb 合金的氧化行为和界面反应
IF 6.6 2区 材料科学
npj Materials Degradation Pub Date : 2024-09-16 DOI: 10.1038/s41529-024-00511-4
Liang-Liang Wu, Hao-Jie Yan, Tao Fan, Qing-Qing Sun, Lian-Kui Wu, Fa-He Cao
{"title":"The oxidation behavior and interfacial reaction between SiO2 coating and Ti45Al8.5Nb alloy","authors":"Liang-Liang Wu, Hao-Jie Yan, Tao Fan, Qing-Qing Sun, Lian-Kui Wu, Fa-He Cao","doi":"10.1038/s41529-024-00511-4","DOIUrl":"10.1038/s41529-024-00511-4","url":null,"abstract":"In this study, SiO2 coating was electrodeposited on Ti45Al8.5Nb alloy to enhance its oxidation resistance at 900 °C. The focus was on the interaction between SiO2 coating and the alloy substrate, and specifically, the role of the Nb element in this context. The formation of a SiO2/(Ti, Nb)O2/Ti5Si3 + Al2O3 three-layer oxide scale significantly inhibits the inward diffusion of oxygen. Beyond the characteristic Ti5Si3 + Al2O3 layer at the interface, the Nb2Al phase embedded within Ti5Si3 was observed. Concurrently, the presence of a (Ti, Nb)O2 layer was confirmed. The relationship between the coating thickness and oxidation resistance was also investigated. It was found that the thickness of the SiO2 coating affects the density of the oxide scale and the inward diffusion rate of oxygen. Moreover, due to the good adhesion to the substrate, the derived oxide scale exhibited good anti-peeling performance when subjected to a cyclic oxidation test.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-15"},"PeriodicalIF":6.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00511-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信