相场成核建模的数据驱动策略

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Hu, Kai Wang, Robert Spatschek
{"title":"相场成核建模的数据驱动策略","authors":"Yang Hu, Kai Wang, Robert Spatschek","doi":"10.1038/s41529-024-00529-8","DOIUrl":null,"url":null,"abstract":"We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00529-8.pdf","citationCount":"0","resultStr":"{\"title\":\"A data-driven strategy for phase field nucleation modeling\",\"authors\":\"Yang Hu, Kai Wang, Robert Spatschek\",\"doi\":\"10.1038/s41529-024-00529-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00529-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00529-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00529-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用机器学习在相场成核模型中选择参数的数据驱动策略,并将其应用于铁铬合金中的氧化物成核。我们采用了一种基于大电势的相场模型,其中包含了朗格文噪声,用于模拟氧化物成核,并与约翰逊-梅尔-阿夫拉米-科尔莫戈罗夫模型进行了比较。相场模拟中的三个独立参数(朗格文噪声强度、数值网格离散化和临界成核半径)被认为是准确模拟成核行为的关键。这些参数可作为机器学习分类和回归模型的输入特征。分类模型将成核行为分为三个成核密度区,防止在模拟中出现无效的成核尝试,而回归模型则估算出适当的朗格文噪声强度,大大减少了耗时的试错模拟。这种数据驱动方法提高了相场模型中参数选择的效率,并为模拟各种材料中成核驱动的微结构演变过程提供了一种通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A data-driven strategy for phase field nucleation modeling

A data-driven strategy for phase field nucleation modeling
We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信