Microstructural investigation of Au ion-irradiated Eu-doped LaPO4 ceramics and single crystals

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sara E. Gilson, Volodymyr Svitlyk, Andrey A. Bukaemskiy, Jonas Niessen, Theresa Lender, Gabriel L. Murphy, Maximilian Henkes, Holger Lippold, Julien Marquardt, Shavkat Akhmadaliev, Christoph Hennig, Bjoern Winkler, Thorsten Tonnesen, Lars Peters, Cornelius Fischer, Nina Huittinen
{"title":"Microstructural investigation of Au ion-irradiated Eu-doped LaPO4 ceramics and single crystals","authors":"Sara E. Gilson, Volodymyr Svitlyk, Andrey A. Bukaemskiy, Jonas Niessen, Theresa Lender, Gabriel L. Murphy, Maximilian Henkes, Holger Lippold, Julien Marquardt, Shavkat Akhmadaliev, Christoph Hennig, Bjoern Winkler, Thorsten Tonnesen, Lars Peters, Cornelius Fischer, Nina Huittinen","doi":"10.1038/s41529-024-00504-3","DOIUrl":null,"url":null,"abstract":"Ceramics and single crystals of LaPO4 monazite doped with Eu(III) were irradiated with 14 MeV Au5+ ions at three different fluences. Changes to crystallinity, local coordination environments, and topography were probed using grazing-incidence X-ray diffraction (GIXRD), vertical scanning interferometry (VSI), scanning electron microscopy (SEM), Raman, and luminescence spectroscopy. GIXRD data of the ceramics revealed fluence dependent amorphization. A similar level of amorphization was detected for samples irradiated with 5 × 1013 ions/cm2 and 1 × 1014 ions/cm2, whereas the sample irradiated with the highest fluence of 1 × 1015 ions/cm2 appeared slightly less amorphous. VSI showed clear swelling of entire grains at the highest ion fluence, while more localized damage to grain boundaries was detected for ceramic samples irradiated at the lowest fluence. Single crystal specimens showed no pronounced topography changes following irradiation. SEM images of the ceramic irradiated at the highest fluence showed topological features indicative of grain surface melting. Raman and luminescence data showed a different degree of disorder in polycrystalline vs. single crystal samples. While changes to PO4 vibrational modes were observed in the ceramics, changes were more subtle or not present in the single crystals. The opposite was observed when probing the local Ln-O environment using Eu(III) luminescence, where the larger changes in terms of an elongation of the Eu-O (or La-O) bond and an increasing relative disorder with increasing fluence were observed only for the single crystals. The dissimilar trends observed in irradiated single crystals and ceramics indicate that grain boundary chemistry likely plays a significant role in the radiation response.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00504-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00504-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramics and single crystals of LaPO4 monazite doped with Eu(III) were irradiated with 14 MeV Au5+ ions at three different fluences. Changes to crystallinity, local coordination environments, and topography were probed using grazing-incidence X-ray diffraction (GIXRD), vertical scanning interferometry (VSI), scanning electron microscopy (SEM), Raman, and luminescence spectroscopy. GIXRD data of the ceramics revealed fluence dependent amorphization. A similar level of amorphization was detected for samples irradiated with 5 × 1013 ions/cm2 and 1 × 1014 ions/cm2, whereas the sample irradiated with the highest fluence of 1 × 1015 ions/cm2 appeared slightly less amorphous. VSI showed clear swelling of entire grains at the highest ion fluence, while more localized damage to grain boundaries was detected for ceramic samples irradiated at the lowest fluence. Single crystal specimens showed no pronounced topography changes following irradiation. SEM images of the ceramic irradiated at the highest fluence showed topological features indicative of grain surface melting. Raman and luminescence data showed a different degree of disorder in polycrystalline vs. single crystal samples. While changes to PO4 vibrational modes were observed in the ceramics, changes were more subtle or not present in the single crystals. The opposite was observed when probing the local Ln-O environment using Eu(III) luminescence, where the larger changes in terms of an elongation of the Eu-O (or La-O) bond and an increasing relative disorder with increasing fluence were observed only for the single crystals. The dissimilar trends observed in irradiated single crystals and ceramics indicate that grain boundary chemistry likely plays a significant role in the radiation response.

Abstract Image

金离子辐照掺杂 Eu 的 LaPO4 陶瓷和单晶的微观结构研究
用 14 MeV Au5+ 离子以三种不同的通量辐照掺杂了 Eu(III) 的 LaPO4 独居石陶瓷和单晶体。使用掠入射 X 射线衍射 (GIXRD)、垂直扫描干涉仪 (VSI)、扫描电子显微镜 (SEM)、拉曼光谱和发光光谱探测了结晶度、局部配位环境和形貌的变化。陶瓷的 GIXRD 数据显示了与通量相关的非晶化。用 5 × 1013 离子/平方厘米和 1 × 1014 离子/平方厘米辐照的样品检测到了类似程度的非晶化,而用最高通量 1 × 1015 离子/平方厘米辐照的样品的非晶化程度略低。VSI 显示,在最高离子通量下,整个晶粒明显膨胀,而在最低离子通量下辐照的陶瓷样品,晶界受到的局部破坏较多。单晶体试样在辐照后没有出现明显的形貌变化。以最高通量辐照的陶瓷的扫描电镜图像显示出表明晶粒表面熔化的拓扑特征。拉曼和发光数据显示,多晶与单晶样品的无序程度不同。虽然在陶瓷中观察到了 PO4 振动模式的变化,但在单晶中变化更为微妙或不存在。在使用 Eu(III)荧光探测局部 Ln-O 环境时观察到的情况恰恰相反,只有在单晶中才观察到 Eu-O(或 La-O)键拉长和相对无序度随荧光量增加而增加的较大变化。在辐照单晶和陶瓷中观察到的不同趋势表明,晶界化学可能在辐照响应中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信